Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access

    ARTICLE

    DPIL-Traj: Differential Privacy Trajectory Generation Framework with Imitation Learning

    Huaxiong Liao1,2, Xiangxuan Zhong2, Xueqi Chen2, Yirui Huang3, Yuwei Lin2, Jing Zhang2,*, Bruce Gu4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069208 - 10 November 2025

    Abstract The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns. However, the use of real-world trajectory data poses significant privacy risks, such as location re-identification and correlation attacks. To address these challenges, privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data. This paper introduces DPIL-Traj, an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation. Firstly, the framework incorporates Differential Privacy Clustering, which anonymizes trajectory data by applying differential privacy techniques that add noise, ensuring the… More >

  • Open Access

    ARTICLE

    Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks

    Zheyuan Jia, Fenglin Jin*, Jun Xie, Yuan He

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069128 - 10 November 2025

    Abstract This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks (SAGIN) through a novel Recursive Multi-Agent Proximal Policy Optimization (RMAPPO) algorithm. The exponential growth of mobile devices and data traffic has substantially increased network congestion, particularly in urban areas and regions with limited terrestrial infrastructure. Our approach jointly optimizes unmanned aerial vehicle (UAV) trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput, minimize energy consumption, and maintain equitable resource distribution. The proposed RMAPPO framework incorporates recurrent neural networks (RNNs) to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent More >

  • Open Access

    ARTICLE

    HAMOT: A Hierarchical Adaptive Framework for Robust Multi-Object Tracking in Complex Environments

    Jahfar Khan Said Baz1, Peng Zhang2,3,*, Mian Muhammad Kamal4, Heba G. Mohamed5, Muhammad Sheraz6, Teong Chee Chuah6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 947-969, 2025, DOI:10.32604/cmes.2025.069956 - 30 October 2025

    Abstract Multiple Object Tracking (MOT) is essential for applications such as autonomous driving, surveillance, and analytics; However, challenges such as occlusion, low-resolution imaging, and identity switches remain persistent. We propose HAMOT, a hierarchical adaptive multi-object tracker that solves these challenges with a novel, unified framework. Unlike previous methods that rely on isolated components, HAMOT incorporates a Swin Transformer-based Adaptive Enhancement (STAE) module—comprising Scene-Adaptive Transformer Enhancement and Confidence-Adaptive Feature Refinement—to improve detection under low-visibility conditions. The hierarchical Dynamic Graph Neural Network with Temporal Attention (DGNN-TA) models both short- and long-term associations, and the Adaptive Unscented Kalman Filter… More >

  • Open Access

    ARTICLE

    Three-Dimensional Trajectory Planning for Robotic Manipulators Using Model Predictive Control and Point Cloud Optimization

    Zeinel Momynkulov1,2, Azhar Tursynova1,2,*, Olzhas Olzhayev1,2, Akhanseri Ikramov1,2, Sayat Ibrayev1, Batyrkhan Omarov1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 891-918, 2025, DOI:10.32604/cmes.2025.068615 - 30 October 2025

    Abstract Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position, velocity, and acceleration must be satisfied. Conventional geometric planners emphasize path smoothness but often ignore dynamic feasibility, motivating control-aware trajectory generation. This study presents a novel model predictive control (MPC) framework for three-dimensional trajectory planning of robotic manipulators that integrates second-order dynamic modeling and multi-objective parameter optimization. Unlike conventional interpolation techniques such as cubic splines, B-splines, and linear interpolation, which neglect physical constraints and system dynamics, the proposed method generates dynamically feasible trajectories by directly optimizing over acceleration inputs while… More >

  • Open Access

    ARTICLE

    Flatness Control with Cascaded Filtered High-Gain and Disturbance Observers for Rehabilitation Exoskeletons

    Sahbi Boubaker1,2,*, Salim Hadj Said3, Souad Kamel1, Habib Dimassi3

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5703-5721, 2025, DOI:10.32604/cmc.2025.069047 - 23 October 2025

    Abstract Accurate trajectory tracking in lower-limb exoskeletons is challenged by the nonlinear, time-varying dynamics of human-robot interaction, limited sensor availability, and unknown external disturbances. This study proposes a novel control strategy that combines flatness-based control with two cascaded observers: a high-gain observer to estimate unmeasured joint velocities, and a nonlinear disturbance observer to reconstruct external torque disturbances in real time. These estimates are integrated into the control law to enable robust, state-feedback-based trajectory tracking. The approach is validated through simulation scenarios involving partial state measurements and abrupt external torque perturbations, reflecting realistic rehabilitation conditions. Results confirm More >

  • Open Access

    ARTICLE

    Dung Beetle Optimization Algorithm Based on Bounded Reflection Optimization and Multi-Strategy Fusion for Multi-UAV Trajectory Planning

    Weicong Tan1,#, Qiwu Wu2,3,#,*, Lingzhi Jiang1, Tao Tong2, Yunchen Su2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3621-3652, 2025, DOI:10.32604/cmc.2025.068781 - 23 September 2025

    Abstract This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization and multi-strategy fusion (BFDBO), which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments. Initially, a collaborative planning cost function for the multi-UAV system is formulated, thereby converting the trajectory planning challenge into an optimization problem. Building on the foundational dung beetle optimization (DBO) algorithm, BFDBO incorporates three significant innovations: a boundary reflection mechanism, an adaptive mixed exploration strategy, and a dynamic multi-scale mutation strategy. These enhancements are intended to… More >

  • Open Access

    ARTICLE

    Dynamic Interaction-Aware Trajectory Prediction with Bidirectional Graph Attention Network

    Jun Li#,*, Kai Xu#,*, Baozhu Chen, Xiaohan Yang, Mengting Sun, Guojun Li, HaoJie Du

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3349-3368, 2025, DOI:10.32604/cmc.2025.067316 - 23 September 2025

    Abstract Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving, social robotics, and intelligent surveillance systems. Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents. These interactions are critical to trajectory prediction accuracy. While prior studies have employed Convolutional Neural Networks (CNNs) and Graph Convolutional Networks (GCNs) to model such interactions, these methods fail to distinguish varying influence levels among neighboring pedestrians. To address this, we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions. Specifically,… More >

  • Open Access

    ARTICLE

    Multi-Modal Attention Networks for Driving Style-Aware Trajectory Prediction in Autonomous Driving

    Lang Ding, Qinmu Wu*, Jiaheng Li, Tao Hong, Linqing Bian

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1999-2020, 2025, DOI:10.32604/cmc.2025.066423 - 29 August 2025

    Abstract Trajectory prediction is a critical task in autonomous driving systems. It enables vehicles to anticipate the future movements of surrounding traffic participants, which facilitates safe and human-like decision-making in the planning and control layers. However, most existing approaches rely on end-to-end deep learning architectures that overlook the influence of driving style on trajectory prediction. These methods often lack explicit modeling of semantic driving behavior and effective interaction mechanisms, leading to potentially unrealistic predictions. To address these limitations, we propose the Driving Style Guided Trajectory Prediction framework (DSG-TP), which incorporates a probabilistic representation of driving style… More >

  • Open Access

    ARTICLE

    The Developmental Trajectory of Family Functioning in Junior High School Students: Effects on Preference for Solitude and Social Avoidance

    Liuyan Ren1,2,#, Ruining Wang3,#, Hohjin Im4, Baojuan Ye1,*, Qi Dai1

    International Journal of Mental Health Promotion, Vol.27, No.6, pp. 809-822, 2025, DOI:10.32604/ijmhp.2025.065246 - 30 June 2025

    Abstract Objectives: Positive family functioning (FF) is critical for adolescent development, yet only a few studies have examined this developmental trajectory pathway. This study aimed to identify different types of FF development trajectories during junior high school students, investigate their influence on social avoidance (SA), and further examine the mediating role of preference for solitude (PS) between them. Methods: A three-wave longitudinal study was used with six-month intervals. Questionnaire data were collected from 436 junior high school students in Jiangxi Province, China. Participants ranged in age from 11 to 14 years old (Mean = 12.89 years,… More >

  • Open Access

    ARTICLE

    Aerial Object Tracking with Attention Mechanisms: Accurate Motion Path Estimation under Moving Camera Perspectives

    Yu-Shiuan Tsai*, Yuk-Hang Sit

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3065-3090, 2025, DOI:10.32604/cmes.2025.064783 - 30 June 2025

    Abstract To improve small object detection and trajectory estimation from an aerial moving perspective, we propose the Aerial View Attention-PRB (AVA-PRB) model. AVA-PRB integrates two attention mechanisms—Coordinate Attention (CA) and the Convolutional Block Attention Module (CBAM)—to enhance detection accuracy. Additionally, Shape-IoU is employed as the loss function to refine localization precision. Our model further incorporates an adaptive feature fusion mechanism, which optimizes multi-scale object representation, ensuring robust tracking in complex aerial environments. We evaluate the performance of AVA-PRB on two benchmark datasets: Aerial Person Detection and VisDrone2019-Det. The model achieves 60.9% mAP@0.5 on the Aerial Person… More >

Displaying 1-10 on page 1 of 72. Per Page