Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access

    ARTICLE

    Predicting Leakage-induced Settlement of Shield tunnels in Saturated Clay

    D.M. Zhang1,2, L.X. Ma1,2, H.W. Huang1,2, J. Zhang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.3, pp. 163-188, 2012, DOI:10.3970/cmes.2012.089.163

    Abstract This paper suggests a new set of analytical solutions for predicting leakage-induced seepage field and ground settlement in saturated clay. A unique feature of the solutions presented is considering the effect of the tunnel lining through the relative permeability between the tunnel and the soil. Through the superposition method, the proposed method can be easily extended to twin parallel tunnels. The accuracy of the analytical solutions are verified with numerical simulations. Parametric studies reveal that the decrease of pore pressure and the consequent settlements of ground and tunnel is proportional to the relative permeability. Over… More >

  • Open Access

    ARTICLE

    A Novel Vibration-based Structure Health Monitoring Approach for the Shallow Buried Tunnel

    Biao Zhou1,2,3, Xiong yao Xie1,2, Yeong Bin Yang4, Jing Cai Jiang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.4, pp. 321-348, 2012, DOI:10.3970/cmes.2012.086.321

    Abstract The vibration-based SHM (Structure Health Monitoring) system has been successfully used in bridge and other surface civil infrastructure. However, its application in operation tunnels remains a big challenge. The reasons are discussed in this paper by comparing the vibration characteristics of the free tunnel structure and tunnel-soil coupled system. It is revealed that all the correlation characteristics of the free tunnel FRFs (Frequency Response Function spectrum) will vanish and be replaced by a coupled resonance frequency when the tunnel is surrounded by soil. The above statement is validated by field measurements. Moreover, the origin of More >

  • Open Access

    ABSTRACT

    Face stability of shallow shield tunnels in dry sandy ground: model tests, discrete element method simulations and theoretical model

    Renpeng Chen, Linggang kong, Lvjun Tang, Yunmin Chen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.4, pp. 99-100, 2011, DOI:10.3970/icces.2011.020.099

    Abstract Face stability is critical in the underground tunneling. In this report, large-scale model tests on the face stability of shallow tunnels for various cover depths (C/D = 0.5, 1, and 2) in dry sandy ground were firstly introduced. Then, a series of three-dimensional DEM models were built to simulated the process of tunnel face failure. The results of the model tests and DEM simulations reveal that a chimney like failure zone appears during the tunnel face failure. It was founded that with the increase of the horizontal displacement of the tunnel face, the support pressure More >

  • Open Access

    ABSTRACT

    A Three-Dimensional Shield Tunnel Model Based on Generalized-FEM

    Lin Yifeng, Zhu Hehua, Cai Yongcang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 51-52, 2011, DOI:10.3970/icces.2011.020.051

    Abstract Shield tunnel linings compose of segments , bolts, liners, et.al., which are quite different in geometry and mechanics. Traditional beam-spring joint model and shell-spring joint model is hard to simulate accurately the detailed characteristic. Classical three-dimensional FEM may cause serious mesh-generation difficulty and expensive calculation cost. Based on generalized finite element method and characteristics of shield tunnel, a three-dimensional shield tunnel structure model is established. In the proposed model a sixteen-node solid-shell generalized FE is devised and employed to simulate segments. Joints between segments or rings are modeled with a surface to surface contact generalized… More >

  • Open Access

    ARTICLE

    Shell-specific Interpolation of Measured 3D Displacements, for Micromechanics-Based Rapid Safety Assessment of Shotcrete Tunnels

    S. Ullah1, B. Pichler1, S. Scheiner1,2, C. Hellmich1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.3, pp. 279-316, 2010, DOI:10.3970/cmes.2010.057.279

    Abstract Point-wise optical measurements of 3D displacement vectors over time are a key input for monitoring shotcrete tunnel shells during construction according to the New Austrian Tunnelling Method (NATM). Aiming at estimation of the stresses prevailing in the highly loaded, hydrating material, we here deal with two different interpolation strategies for reconstructing, from measured displacement vectors, the 3D displacement field histories of the inner surface of the tunnel shell. The first approach considers spatial interpolation of displacement components in a fixed Cartesian base frame, while the second (new) approach refers to displacement components in a moving… More >

  • Open Access

    ARTICLE

    Icing Tests in a Small Blow-Down Wind Tunnel

    G. P. Russo1, A. Esposito1, B. Esposito2, R. Renis1,1, F. Parente1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.3, pp. 319-336, 2010, DOI:10.3970/fdmp.2010.006.319

    Abstract A low-cost facility, able to simulate icing conditions occurring in flight, has been built via modification of a small blow-down supersonic wind tunnel. As the storage tank (30bar) is emptied through the wind tunnel, expansion of the contained air makes temperature to decrease down to -20 C and a control valve holds such temperature for about 200s. In order to increase the liquid water content (LWC) of the flow allowing ice formation on model surfaces within the test chamber, water is sprayed in the stream within the stagnation chamber by means of a controlled spray… More >

  • Open Access

    ARTICLE

    Numerical Simulations on Piezoresistivity of CNT/Polymer Based Nanocomposites

    Alamusi1, Y.L. Liu1, N. Hu1,2

    CMC-Computers, Materials & Continua, Vol.20, No.2, pp. 101-118, 2010, DOI:10.3970/cmc.2010.020.101

    Abstract In this work, we propose a 3 dimensional (3D) numerical model to predict the piezoresistivity behaviors of a nanocomposite material made from an insulating polymer filled by carbon nanotubes (CNTs). This material is very hopeful for its application in highly sensitive strain sensor by measuring its piezoresistivity, i.e., the ratio of resistance change versus applied strain. In this numerical approach, a 3D resistor network model is firstly proposed to predict the electrical conductivity of the nanocomposite with a large amount of randomly dispersed CNTs under the zero strain state. By focusing on the fact that… More >

  • Open Access

    ARTICLE

    The Colossal Piezoresistive Effect in Nickel Nanostrand Polymer Composites and a Quantum Tunneling Model

    Oliver K. Johnson1, Calvin J. Gardner1, David T. Fullwood1, Brent L.Adams1, Nathan Hansen2, George Hansen2

    CMC-Computers, Materials & Continua, Vol.15, No.2, pp. 87-112, 2010, DOI:10.3970/cmc.2010.015.087

    Abstract A novel nickel nanostrand-silicone composite material at an optimized 15 vol% filler concentration demonstrates a dramatic piezoresistive effect with a negative gauge factor (ratio of percent change in resistivity to strain). The composite volume resistivity decreases in excess of three orders of magnitude at a 60% strain. The piezoresistivity does decrease slightly as a function of cycles, but not significantly as a function of time. The material's resistivity is also temperature dependent, once again with a negative dependence.
    The evidence indicates that nickel strands are physically separated by matrix material even at high volume fractions, and More >

  • Open Access

    ARTICLE

    Contact between a Tunnel Lining and a Damage-Susceptible Viscoplastic Medium

    Frederic L. Pellet1

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.3, pp. 279-296, 2009, DOI:10.3970/cmes.2009.052.279

    Abstract In this study, the contact and interaction between a tunnel lining support and a damage-susceptible viscoplastic medium is investigated. First, back-analysis of the time-dependent behaviour of a drift excavated across a carboniferous rock mass which exhibited large delayed displacements was undertaken. Drift closure was simulated using an elasto-viscoplastic constitutive model that included the strength degradation process. This 3D numerical simulation was performed taking into account both stage construction sequence and rate of excavation advancement. A comparison of the numerical results with the data measured on site allowed for the calibration of the model parameters. Subsequently, More >

  • Open Access

    ARTICLE

    A Three Dimensional Numerical Investigation of the T* integral along a Curved Crack Front

    J. H. Jackson1, A. S. Kobayashi2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.1, pp. 17-30, 2004, DOI:10.3970/cmes.2004.006.017

    Abstract The Tε*  integral was calculated numerically along an extending, tunneling crack front in an 8 mm thick, aluminum three-point bend (3PB) specimen, using a numerical model driven by experimentally obtained surface displacements. The model provided input to a contour integration for the Tε*  integral, via the Equivalent Domain Integral (EDI) method with incremental plasticity. Validity of the analysis was ensured by the agreement of the Tε*  integral obtained on the surface (plane stress) and the plane stress values from previous studies. Tε*   was observed to decrease from the outer surface of the specimen to More >

Displaying 61-70 on page 7 of 70. Per Page