Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (254)
  • Open Access

    ARTICLE

    Influence of Methane-Hydrogen Mixture Characteristics on Compressor Vibrations

    Vladimir Ya. Modorskii, Ivan E. Cherepanov*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1031-1043, 2024, DOI:10.32604/fdmp.2024.048494

    Abstract A transition to clean hydrogen energy will not be possible until the issues related to its production, transportation, storage, etc., are adequately resolved. Currently, however, it is possible to use methane-hydrogen mixtures. Natural gas can be transported using a pipeline system with the required pressure being maintained by gas compression stations. This method, however, is affected by some problems too. Compressors emergency stops can be induced by vibrations because in some cases, mechanical methods are not able to reduce the vibration amplitude. As an example, it is known that a gas-dynamic flow effect in labyrinth… More >

  • Open Access

    ARTICLE

    Damage Diagnosis of Bleacher Based on an Enhanced Convolutional Neural Network with Training Interference

    Chaozhi Cai*, Xiaoyu Guo, Yingfang Xue, Jianhua Ren

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 321-339, 2024, DOI:10.32604/sdhm.2024.045831

    Abstract Bleachers play a crucial role in practical engineering applications, and any damage incurred during their operation poses a significant threat to the safety of both life and property. Consequently, it becomes imperative to conduct damage diagnosis and health monitoring of bleachers. The intricate structure of bleachers, the varied types of potential damage, and the presence of similar vibration data in adjacent locations make it challenging to achieve satisfactory diagnosis accuracy through traditional time-frequency analysis methods. Furthermore, field environmental noise can adversely impact the accuracy of bleacher damage diagnosis. To enhance the accuracy and anti-noise capabilities… More > Graphic Abstract

    Damage Diagnosis of Bleacher Based on an Enhanced Convolutional Neural Network with Training Interference

  • Open Access

    ARTICLE

    Application of the CatBoost Model for Stirred Reactor State Monitoring Based on Vibration Signals

    Xukai Ren1,2,*, Huanwei Yu2, Xianfeng Chen2, Yantong Tang2, Guobiao Wang1,*, Xiyong Du2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 647-663, 2024, DOI:10.32604/cmes.2024.048782

    Abstract Stirred reactors are key equipment in production, and unpredictable failures will result in significant economic losses and safety issues. Therefore, it is necessary to monitor its health state. To achieve this goal, in this study, five states of the stirred reactor were firstly preset: normal, shaft bending, blade eccentricity, bearing wear, and bolt looseness. Vibration signals along x, y and z axes were collected and analyzed in both the time domain and frequency domain. Secondly, 93 statistical features were extracted and evaluated by ReliefF, Maximal Information Coefficient (MIC) and XGBoost. The above evaluation results were More >

  • Open Access

    ARTICLE

    Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis

    Yan Wang*, Siwen Li, Na Wei

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3467-3493, 2024, DOI:10.32604/cmes.2024.046454

    Abstract A novel approach for analyzing coupled vibrations between vehicles and bridges is presented, taking into account spatiotemporal effects and mechanical phenomena resulting from vehicle braking. Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method. The method’s validity and reliability are substantiated through numerical examples. A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed, braking acceleration, braking location, and road surface roughness on the mid-span displacement and impact factor of the bridge… More >

  • Open Access

    ARTICLE

    Prediction of Ground Vibration Induced by Rock Blasting Based on Optimized Support Vector Regression Models

    Yifan Huang1, Zikang Zhou1,2, Mingyu Li1, Xuedong Luo1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3147-3165, 2024, DOI:10.32604/cmes.2024.045947

    Abstract Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management. In this study, Tuna Swarm Optimization (TSO), Whale Optimization Algorithm (WOA), and Cuckoo Search (CS) were used to optimize two hyperparameters in support vector regression (SVR). Based on these methods, three hybrid models to predict peak particle velocity (PPV) for bench blasting were developed. Eighty-eight samples were collected to establish the PPV database, eight initial blasting parameters were chosen as input parameters for the prediction model, and the PPV was the output parameter. As predictive performance evaluation indicators, the coefficient of More >

  • Open Access

    REVIEW

    A Review of the Tuned Mass Damper Inerter (TMDI) in Energy Harvesting and Vibration Control: Designs, Analysis and Applications

    Xiaofang Kang1,2,*, Qiwen Huang1, Zongqin Wu1, Jianjun Tang1, Xueqin Jiang1, Shancheng Lei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2361-2398, 2024, DOI:10.32604/cmes.2023.043936

    Abstract Tuned mass damper inerter (TMDI) is a device that couples traditional tuned mass dampers (TMD) with an inertial device. The inertial device produces resistance proportional to the relative acceleration at its two ends through its “inertial” constant. Due to its unique mechanical properties, TMDI has received widespread attention and application in the past twenty years. As different configurations are required in different practical situations, TMDI is still active in the research on vibration control and energy harvesting in structures. This paper provides a comprehensive review of the research status of TMDI. This work first examines… More >

  • Open Access

    ARTICLE

    Prediction of Sound Transmission Loss of Vehicle Floor System Based on 1D-Convolutional Neural Networks

    Cheng Peng1, Siwei Cheng2, Min Sun1, Chao Ren1, Jun Song1, Haibo Huang2,*

    Sound & Vibration, Vol.58, pp. 25-46, 2024, DOI:10.32604/sv.2024.046940

    Abstract The Noise, Vibration, and Harshness (NVH) experience during driving is significantly influenced by the sound insulation performance of the car floor acoustic package. As such, accurate and efficient predictions of its sound insulation performance are crucial for optimizing related noise reduction designs. However, the complex acoustic transmission mechanisms and difficulties in characterizing the sound absorption and insulation properties of the floor acoustic package pose significant challenges to traditional Computer-Aided Engineering (CAE) methods, leading to low modeling efficiency and prediction accuracy. To address these limitations, a hierarchical multi-objective decomposition system for predicting the sound insulation performance More >

  • Open Access

    ARTICLE

    Nonlinear Flap-Wise Vibration Characteristics of Wind Turbine Blades Based on Multi-Scale Analysis Method

    Qifa Lang, Yuqiao Zheng*, Tiancai Cui, Chenglong Shi, Heyu Zhang

    Energy Engineering, Vol.121, No.2, pp. 483-498, 2024, DOI:10.32604/ee.2023.042437

    Abstract This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle. We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory (NREL), to research the effects of the nonlinear flap-wise vibration characteristics. The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam, and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first. Then, the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the… More >

  • Open Access

    ARTICLE

    Ice-Induced Vibrational Response of Single-Pile Offshore Wind-Turbine Foundations

    Zhoujie Zhu1, Gang Wang1, Qingquan Liu1, Guojun Wang2, Rui Dong2, Dayong Zhang2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 625-639, 2024, DOI:10.32604/fdmp.2023.042128

    Abstract Important challenges must be addressed to make wind turbines sustainable renewable energy sources. A typical problem concerns the design of the foundation. If the pile diameter is larger than that of the jacket platform, traditional mechanical models cannot be used. In this study, relying on the seabed soil data of an offshore wind farm, the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters. An approach to determine the equivalent pile length is also proposed accordingly. The results provide evidence for the effectiveness and reliability More >

  • Open Access

    ARTICLE

    Development and Application of a Power Law Constitutive Model for Eddy Current Dampers

    Longteng Liang1,2,3, Zhouquan Feng2,4,*, Hongyi Zhang2,4, Zhengqing Chen2,4, Changzhao Qian1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2403-2419, 2024, DOI:10.32604/cmes.2023.031260

    Abstract Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to their exceptional damping performance and durability. However, the existing constitutive models present challenges to the widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA) software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing a new constitutive model that is both easily understandable and user-friendly for FEA software. By utilizing numerical results obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture the nonlinear More >

Displaying 1-10 on page 1 of 254. Per Page