Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (339)
  • Open Access

    ARTICLE

    Improved Cuckoo Search Algorithm for Engineering Optimization Problems

    Shao-Qiang Ye*, Azlan Mohd Zain, Yusliza Yusoff

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073411 - 10 February 2026

    Abstract Engineering optimization problems are often characterized by high dimensionality, constraints, and complex, multimodal landscapes. Traditional deterministic methods frequently struggle under such conditions, prompting increased interest in swarm intelligence algorithms. Among these, the Cuckoo Search (CS) algorithm stands out for its promising global search capabilities. However, it often suffers from premature convergence when tackling complex problems. To address this limitation, this paper proposes a Grouped Dynamic Adaptive CS (GDACS) algorithm. The enhancements incorporated into GDACS can be summarized into two key aspects. Firstly, a chaotic map is employed to generate initial solutions, leveraging the inherent randomness… More >

  • Open Access

    ARTICLE

    A Hybrid Vision Transformer with Attention Architecture for Efficient Lung Cancer Diagnosis

    Abdu Salam1, Fahd M. Aldosari2, Donia Y. Badawood3, Farhan Amin4,*, Isabel de la Torre5,*, Gerardo Mendez Mezquita6, Henry Fabian Gongora6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073342 - 10 February 2026

    Abstract Lung cancer remains a major global health challenge, with early diagnosis crucial for improved patient survival. Traditional diagnostic techniques, including manual histopathology and radiological assessments, are prone to errors and variability. Deep learning methods, particularly Vision Transformers (ViT), have shown promise for improving diagnostic accuracy by effectively extracting global features. However, ViT-based approaches face challenges related to computational complexity and limited generalizability. This research proposes the DualSet ViT-PSO-SVM framework, integrating a ViT with dual attention mechanisms, Particle Swarm Optimization (PSO), and Support Vector Machines (SVM), aiming for efficient and robust lung cancer classification across multiple… More >

  • Open Access

    ARTICLE

    Real-Time 3D Scene Perception in Dynamic Urban Environments via Street Detection Gaussians

    Yu Du1, Runwei Guan2, Ho-Pun Lam1, Jeremy Smith3, Yutao Yue4,5, Ka Lok Man1, Yan Li6,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072544 - 10 February 2026

    Abstract As a cornerstone for applications such as autonomous driving, 3D urban perception is a burgeoning field of study. Enhancing the performance and robustness of these perception systems is crucial for ensuring the safety of next-generation autonomous vehicles. In this work, we introduce a novel neural scene representation called Street Detection Gaussians (SDGs), which redefines urban 3D perception through an integrated architecture unifying reconstruction and detection. At its core lies the dynamic Gaussian representation, where time-conditioned parameterization enables simultaneous modeling of static environments and dynamic objects through physically constrained Gaussian evolution. The framework’s radar-enhanced perception module… More >

  • Open Access

    ARTICLE

    Hybrid Quantum Gate Enabled CNN Framework with Optimized Features for Human-Object Detection and Recognition

    Nouf Abdullah Almujally1, Tanvir Fatima Naik Bukht2, Shuaa S. Alharbi3, Asaad Algarni4, Ahmad Jalal2,5, Jeongmin Park6,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072243 - 10 February 2026

    Abstract Recognising human-object interactions (HOI) is a challenging task for traditional machine learning models, including convolutional neural networks (CNNs). Existing models show limited transferability across complex datasets such as D3D-HOI and SYSU 3D HOI. The conventional architecture of CNNs restricts their ability to handle HOI scenarios with high complexity. HOI recognition requires improved feature extraction methods to overcome the current limitations in accuracy and scalability. This work proposes a Novel quantum gate-enabled hybrid CNN (QEH-CNN) for effective HOI recognition. The model enhances CNN performance by integrating quantum computing components. The framework begins with bilateral image filtering,… More >

  • Open Access

    ARTICLE

    A Robust Vision-Based Framework for Traffic Sign and Light Detection in Automated Driving Systems

    Mohammed Al-Mahbashi1,2,*, Ali Ahmed3, Abdolraheem Khader4,*, Shakeel Ahmad3, Mohamed A. Damos5, Ahmed Abdu6

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075909 - 29 January 2026

    Abstract Reliable detection of traffic signs and lights (TSLs) at long range and under varying illumination is essential for improving the perception and safety of autonomous driving systems (ADS). Traditional object detection models often exhibit significant performance degradation in real-world environments characterized by high dynamic range and complex lighting conditions. To overcome these limitations, this research presents FED-YOLOv10s, an improved and lightweight object detection framework based on You Only look Once v10 (YOLOv10). The proposed model integrates a C2f-Faster block derived from FasterNet to reduce parameters and floating-point operations, an Efficient Multiscale Attention (EMA) mechanism to More >

  • Open Access

    ARTICLE

    A Novel Unified Framework for Automated Generation and Multimodal Validation of UML Diagrams

    Van-Viet Nguyen1, Huu-Khanh Nguyen2, Kim-Son Nguyen1, Thi Minh-Hue Luong1, Duc-Quang Vu1, Trung-Nghia Phung3, The-Vinh Nguyen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075442 - 29 January 2026

    Abstract It remains difficult to automate the creation and validation of Unified Modeling Language (UML) diagrams due to unstructured requirements, limited automated pipelines, and the lack of reliable evaluation methods. This study introduces a cohesive architecture that amalgamates requirement development, UML synthesis, and multimodal validation. First, LLaMA-3.2-1B-Instruct was utilized to generate user-focused requirements. Then, DeepSeek-R1-Distill-Qwen-32B applies its reasoning skills to transform these requirements into PlantUML code. Using this dual-LLM pipeline, we constructed a synthetic dataset of 11,997 UML diagrams spanning six major diagram families. Rendering analysis showed that 89.5% of the generated diagrams compile correctly, while… More >

  • Open Access

    ARTICLE

    Development of AI-Based Monitoring System for Stratified Quality Assessment of 3D Printed Parts

    Yewon Choi1,2, Song Hyeon Ju2, Jungsoo Nam2,*, Min Ku Kim1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071817 - 29 January 2026

    Abstract The composite material layering process has attracted considerable attention due to its production advantages, including high scalability and compatibility with a wide range of raw materials. However, changes in process conditions can lead to degradation in layer quality and non-uniformity, highlighting the need for real-time monitoring to improve overall quality and efficiency. In this study, an AI-based monitoring system was developed to evaluate layer width and assess quality in real time. Three deep learning models Faster Region-based Convolutional Neural Network (R-CNN), You Only Look Once version 8 (YOLOv8), and Single Shot MultiBox Detector (SSD) were… More >

  • Open Access

    ARTICLE

    Enhancing Anomaly Detection with Causal Reasoning and Semantic Guidance

    Weishan Gao1,2, Ye Wang1,2, Xiaoyin Wang1,2, Xiaochuan Jing1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073850 - 12 January 2026

    Abstract In the field of intelligent surveillance, weakly supervised video anomaly detection (WSVAD) has garnered widespread attention as a key technology that identifies anomalous events using only video-level labels. Although multiple instance learning (MIL) has dominated the WSVAD for a long time, its reliance solely on video-level labels without semantic grounding hinders a fine-grained understanding of visually similar yet semantically distinct events. In addition, insufficient temporal modeling obscures causal relationships between events, making anomaly decisions reactive rather than reasoning-based. To overcome the limitations above, this paper proposes an adaptive knowledge-based guidance method that integrates external structured… More >

  • Open Access

    ARTICLE

    CIT-Rec: Enhancing Sequential Recommendation System with Large Language Models

    Ziyu Li1, Zhen Chen2, Xuejing Fu2, Tong Mo1,*, Weiping Li1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071994 - 12 January 2026

    Abstract Recommendation systems are key to boosting user engagement, satisfaction, and retention, particularly on media platforms where personalized content is vital. Sequential recommendation systems learn from user-item interactions to predict future items of interest. However, many current methods rely on unique user and item IDs, limiting their ability to represent users and items effectively, especially in zero-shot learning scenarios where training data is scarce. With the rapid development of Large Language Models (LLMs), researchers are exploring their potential to enhance recommendation systems. However, there is a semantic gap between the linguistic semantics of LLMs and the… More >

  • Open Access

    ARTICLE

    KPA-ViT: Key Part-Level Attention Vision Transformer for Foreign Body Classification on Coal Conveyor Belt

    Haoxuanye Ji*, Zhiliang Chen, Pengfei Jiang, Ziyue Wang, Ting Yu, Wei Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071880 - 12 January 2026

    Abstract Foreign body classification on coal conveyor belts is a critical component of intelligent coal mining systems. Previous approaches have primarily utilized convolutional neural networks (CNNs) to effectively integrate spatial and semantic information. However, the performance of CNN-based methods remains limited in classification accuracy, primarily due to insufficient exploration of local image characteristics. Unlike CNNs, Vision Transformer (ViT) captures discriminative features by modeling relationships between local image patches. However, such methods typically require a large number of training samples to perform effectively. In the context of foreign body classification on coal conveyor belts, the limited availability… More >

Displaying 1-10 on page 1 of 339. Per Page