Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (315)
  • Open Access

    REVIEW

    Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends

    Ameer Hamza, Robertas Damaševičius*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-41, 2026, DOI:10.32604/cmc.2025.069721 - 10 November 2025

    Abstract This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities, focusing on recent trends from 2022 to 2025. The primary objective is to evaluate methodological advancements, model performance, dataset usage, and existing challenges in developing clinically robust AI systems. We included peer-reviewed journal articles and high-impact conference papers published between 2022 and 2025, written in English, that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification. Excluded were non-open-access publications, books, and non-English articles. A structured search was… More >

  • Open Access

    ARTICLE

    CAFE-GAN: CLIP-Projected GAN with Attention-Aware Generation and Multi-Scale Discrimination

    Xuanhong Wang1, Hongyu Guo1, Jiazhen Li1, Mingchen Wang1, Xian Wang1, Yijun Zhang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.069482 - 10 November 2025

    Abstract Over the past decade, large-scale pre-trained autoregressive and diffusion models rejuvenated the field of text-guided image generation. However, these models require enormous datasets and parameters, and their multi-step generation processes are often inefficient and difficult to control. To address these challenges, we propose CAFE-GAN, a CLIP-Projected GAN with Attention-Aware Generation and Multi-Scale Discrimination, which incorporates a pre-trained CLIP model along with several key architectural innovations. First, we embed a coordinate attention mechanism into the generator to capture long-range dependencies and enhance feature representation. Second, we introduce a trainable linear projection layer after the CLIP text… More >

  • Open Access

    ARTICLE

    Intelligent Semantic Segmentation with Vision Transformers for Aerial Vehicle Monitoring

    Moneerah Alotaibi*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069195 - 10 November 2025

    Abstract Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods, which often demand extensive computational resources and struggle with diverse data acquisition techniques. This research presents a novel approach for vehicle classification and recognition in aerial image sequences, integrating multiple advanced techniques to enhance detection accuracy. The proposed model begins with preprocessing using Multiscale Retinex (MSR) to enhance image quality, followed by Expectation-Maximization (EM) Segmentation for precise foreground object identification. Vehicle detection is performed using the state-of-the-art YOLOv10 framework, while feature extraction incorporates Maximally Stable Extremal… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Gender-Based Customer Behavior Analytics in Retail Spaces Using Computer Vision

    Ginanjar Suwasono Adi1, Samsul Huda2,*, Griffani Megiyanto Rahmatullah3, Dodit Suprianto1, Dinda Qurrota Aini Al-Sefy3, Ivon Sandya Sari Putri4, Lalu Tri Wijaya Nata Kusuma5

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.068619 - 10 November 2025

    Abstract In the competitive retail industry of the digital era, data-driven insights into gender-specific customer behavior are essential. They support the optimization of store performance, layout design, product placement, and targeted marketing. However, existing computer vision solutions often rely on facial recognition to gather such insights, raising significant privacy and ethical concerns. To address these issues, this paper presents a privacy-preserving customer analytics system through two key strategies. First, we deploy a deep learning framework using YOLOv9s, trained on the RCA-TVGender dataset. Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate More >

  • Open Access

    ARTICLE

    STPEIC: A Swin Transformer-Based Framework for Interpretable Post-Earthquake Structural Classification

    Xinrui Ma, Shizhi Chen*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1745-1767, 2025, DOI:10.32604/sdhm.2025.071148 - 17 November 2025

    Abstract The rapid and accurate assessment of structural damage following an earthquake is crucial for effective emergency response and post-disaster recovery. Traditional manual inspection methods are often slow, labor-intensive, and prone to human error. To address these challenges, this study proposes STPEIC (Swin Transformer-based Framework for Interpretable Post-Earthquake Structural Classification), an automated deep learning framework designed for analyzing post-earthquake images. STPEIC performs two key tasks: structural components classification and damage level classification. By leveraging the hierarchical attention mechanisms of the Swin Transformer (Shifted Window Transformer), the model achieves 85.4% accuracy in structural component classification and 85.1% More >

  • Open Access

    ARTICLE

    Structural Performance Evaluation of Lift-and-Transverse Type Parking Equipment Based on the Synergy of Experiment and Simulation

    Chuang Meng1,*, Yutong Bi1, Bingji Zhang1, Wentao Fu2, Guang Chen3

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1681-1694, 2025, DOI:10.32604/sdhm.2025.068732 - 17 November 2025

    Abstract The lift-and-transverse type parking equipment, with its core advantages such as high space utilization, modular and flexible layout, and intelligent operation, has become an efficient solution to alleviate the urban parking problem. However, existing research still lacks a systematic evaluation of its structural performance, particularly in areas such as the fatigue characteristics of steel frame materials, stress distribution under dynamic loads, and resonance risk analysis. The stress amplitude (S) and fatigue life (N) relationship curve of Q235 steel, the material used in the steel frame of the lift-and-transverse type parking equipment, was obtained through fatigue… More >

  • Open Access

    ARTICLE

    GLAMSNet: A Gated-Linear Aspect-Aware Multimodal Sentiment Network with Alignment Supervision and External Knowledge Guidance

    Dan Wang1, Zhoubin Li1, Yuze Xia1,2,*, Zhenhua Yu1,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5823-5845, 2025, DOI:10.32604/cmc.2025.071656 - 23 October 2025

    Abstract Multimodal Aspect-Based Sentiment Analysis (MABSA) aims to detect sentiment polarity toward specific aspects by leveraging both textual and visual inputs. However, existing models suffer from weak aspect-image alignment, modality imbalance dominated by textual signals, and limited reasoning for implicit or ambiguous sentiments requiring external knowledge. To address these issues, we propose a unified framework named Gated-Linear Aspect-Aware Multimodal Sentiment Network (GLAMSNet). First of all, an input encoding module is employed to construct modality-specific and aspect-aware representations. Subsequently, we introduce an image–aspect correlation matching module to provide hierarchical supervision for visual-textual alignment. Building upon these components, More >

  • Open Access

    ARTICLE

    Subdivision-Based Isogeometric BEM with Deep Neural Network Acceleration for Acoustic Uncertainty Quantification under Ground Reflection Effects

    Yingying Guo1, Ziyu Cui2, Jibing Shen1, Pei Li3,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4519-4550, 2025, DOI:10.32604/cmc.2025.071504 - 23 October 2025

    Abstract Accurate simulation of acoustic wave propagation in complex structures is of great importance in engineering design, noise control, and related research areas. Although traditional numerical simulation methods can provide precise results, they often face high computational costs when applied to complex models or problems involving parameter uncertainties, particularly in the presence of multiple coupled parameters or intricate geometries. To address these challenges, this study proposes an efficient algorithm for simulating the acoustic field of structures with adhered sound-absorbing materials while accounting for ground reflection effects. The proposed method integrates Catmull-Clark subdivision surfaces with the boundary… More >

  • Open Access

    ARTICLE

    HERL-ViT: A Hybrid Enhanced Vision Transformer Based on Regional-Local Attention for Malware Detection

    Boyan Cui1,2, Huijuan Wang1,*, Yongjun Qi1,*, Hongce Chen1, Quanbo Yuan1,3, Dongran Liu1, Xuehua Zhou1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5531-5553, 2025, DOI:10.32604/cmc.2025.070101 - 23 October 2025

    Abstract The proliferation of malware and the emergence of adversarial samples pose severe threats to global cybersecurity, demanding robust detection mechanisms. Traditional malware detection methods suffer from limited feature extraction capabilities, while existing Vision Transformer (ViT)-based approaches face high computational complexity due to global self-attention, hindering their efficiency in handling large-scale image data. To address these issues, this paper proposes a novel hybrid enhanced Vision Transformer architecture, HERL-ViT, tailored for malware detection. The detection framework involves five phases: malware image visualization, image segmentation with patch embedding, regional-local attention-based feature extraction, enhanced feature transformation, and classification. Methodologically,… More >

  • Open Access

    ARTICLE

    Leveraging Federated Learning for Efficient Privacy-Enhancing Violent Activity Recognition from Videos

    Moshiur Rahman Tonmoy1, Md. Mithun Hossain1, Mejdl Safran2,*, Sultan Alfarhood2, Dunren Che3, M. F. Mridha4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5747-5763, 2025, DOI:10.32604/cmc.2025.067589 - 23 October 2025

    Abstract Automated recognition of violent activities from videos is vital for public safety, but often raises significant privacy concerns due to the sensitive nature of the footage. Moreover, resource constraints often hinder the deployment of deep learning-based complex video classification models on edge devices. With this motivation, this study aims to investigate an effective violent activity classifier while minimizing computational complexity, attaining competitive performance, and mitigating user data privacy concerns. We present a lightweight deep learning architecture with fewer parameters for efficient violent activity recognition. We utilize a two-stream formation of 3D depthwise separable convolution coupled More >

Displaying 1-10 on page 1 of 315. Per Page