Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (315)
  • Open Access

    ARTICLE

    Research on Sleeve Grouting Density Detection Based on the Impact Echo Method

    Pu Zhang1, Yingjun Li1, Xinyu Zhu1, Shizhan Xu1, Pinwu Guan1,*, Wei Liu2, Yanwei Guo2, Haibo Wang2

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 143-159, 2024, DOI:10.32604/sdhm.2024.046986

    Abstract Grouting defects are an inherent challenge in construction practices, exerting a considerable impact on the operational structural integrity of connections. This investigation employed the impact-echo technique for the detection of grouting anomalies within connections, enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes. A series of grouting completeness assessments were meticulously conducted, taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement. The findings revealed that: (i) the energy distribution for the high-strength concrete cohort predominantly occupied the frequency bands 42, 44, 45, and 47,… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Cold-Formed Thin-Walled Steel Short Columns with Pitting Corrosion during Bridge Construction

    Hongzhang Wang1, Jing Guo1, Shanjun Yang1, Chaoheng Cheng2, Jing Chen3,*, Zhihao Chen3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 181-196, 2024, DOI:10.32604/sdhm.2024.044628

    Abstract Pitting corrosion is harmful during bridge construction, which will lead to uneven roughness of steel surfaces and reduce the thickness of steel. Hence, the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied, and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion. In detail, the failure modes and load-displacement curves of specimens with different locations, area ratios, and depths are obtained through a large number of non-linear finite element analysis. As for the specimens with pitting corrosion on the web, all… More > Graphic Abstract

    Numerical Analysis of Cold-Formed Thin-Walled Steel Short Columns with Pitting Corrosion during Bridge Construction

  • Open Access

    ARTICLE

    Investigation of FRP and SFRC Technologies for Efficient Tunnel Reinforcement Using the Cohesive Zone Model

    Gang Niu1,2, Zhaoyang Jin2, Wei Zhang3,*, Yiqun Huang3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 161-179, 2024, DOI:10.32604/sdhm.2023.044580

    Abstract Amid urbanization and the continuous expansion of transportation networks, the necessity for tunnel construction and maintenance has become paramount. Addressing this need requires the investigation of efficient, economical, and robust tunnel reinforcement techniques. This paper explores fiber reinforced polymer (FRP) and steel fiber reinforced concrete (SFRC) technologies, which have emerged as viable solutions for enhancing tunnel structures. FRP is celebrated for its lightweight and high-strength attributes, effectively augmenting load-bearing capacity and seismic resistance, while SFRC’s notable crack resistance and longevity potentially enhance the performance of tunnel segments. Nonetheless, current research predominantly focuses on experimental analysis, lacking comprehensive theoretical models. To… More > Graphic Abstract

    Investigation of FRP and SFRC Technologies for Efficient Tunnel Reinforcement Using the Cohesive Zone Model

  • Open Access

    ARTICLE

    Intelligent Sensing and Control of Road Construction Robot Scenes Based on Road Construction

    Zhongping Chen, Weigong Zhang*

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 111-124, 2024, DOI:10.32604/sdhm.2023.043563

    Abstract Automatic control technology is the basis of road robot improvement, according to the characteristics of construction equipment and functions, the research will be input type perception from positioning acquisition, real-world monitoring, the process will use RTK-GNSS positional perception technology, by projecting the left side of the earth from Gauss-Krueger projection method, and then carry out the Cartesian conversion based on the characteristics of drawing; steering control system is the core of the electric drive unmanned module, on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles, the steering system key components such as… More >

  • Open Access

    ARTICLE

    A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals

    Shuai Chen1, Yinwei Ma2, Zhongshu Wang2, Zongmei Xu3, Song Zhang1, Jianle Li1, Hao Xu1, Zhanjun Wu1,*

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 125-141, 2024, DOI:10.32604/sdhm.2024.042594

    Abstract The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life. To this end, distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages, such as lightweight and ease of embedding. However, identifying the precise location of damage from the optical fiber signals remains a critical challenge. In this paper, a novel approach which namely Modified Sliding Window Principal Component Analysis (MSWPCA) was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors. The proposed method is able to extract signal… More > Graphic Abstract

    A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals

  • Open Access

    ARTICLE

    Intelligent Fault Diagnosis Method of Rolling Bearings Based on Transfer Residual Swin Transformer with Shifted Windows

    Haomiao Wang1, Jinxi Wang2, Qingmei Sui2,*, Faye Zhang2, Yibin Li1, Mingshun Jiang2, Phanasindh Paitekul3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 91-110, 2024, DOI:10.32604/sdhm.2023.041522

    Abstract Due to their robust learning and expression ability for complex features, the deep learning (DL) model plays a vital role in bearing fault diagnosis. However, since there are fewer labeled samples in fault diagnosis, the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields, which limits the diagnostic performance. To solve this problem, a novel transfer residual Swin Transformer (RST) is proposed for rolling bearings in this paper. RST has 24 residual self-attention layers, which use the hierarchical design and the shifted window-based residual self-attention. Combined with transfer learning techniques, the… More >

  • Open Access

    ARTICLE

    Assessment of the Influence of Tunnel Settlement on Operational Performance of Subway Vehicles

    Gang Niu1,2, Guangwei Zhang1, Zhaoyang Jin1, Wei Zhang3,*, Xiang Liu3

    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 55-71, 2024, DOI:10.32604/sdhm.2023.044832

    Abstract In the realm of subway shield tunnel operations, the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern. This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system. The model integrates the geometric deformations of the track, attributed to settlement, as track irregularities. A novel “cyclic model” algorithm was employed to enhance computational efficiency without compromising on precision, a claim that was rigorously validated. The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas. The research primarily focuses on how… More >

  • Open Access

    REVIEW

    Emerging Trends in Damage Tolerance Assessment: A Review of Smart Materials and Self-Repairable Structures

    Ali Akbar Firoozi1,*, Ali Asghar Firoozi2

    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 1-18, 2024, DOI:10.32604/sdhm.2023.044573

    Abstract The discipline of damage tolerance assessment has experienced significant advancements due to the emergence of smart materials and self-repairable structures. This review offers a comprehensive look into both traditional and innovative methodologies employed in damage tolerance assessment. After a detailed exploration of damage tolerance concepts and their historical progression, the review juxtaposes the proven techniques of damage assessment with the cutting-edge innovations brought about by smart materials and self-repairable structures. The subsequent sections delve into the synergistic integration of smart materials with self-repairable structures, marking a pivotal stride in damage tolerance by establishing an autonomous system for immediate damage identification… More >

  • Open Access

    ARTICLE

    A Novel Method for Aging Prediction of Railway Catenary Based on Improved Kalman Filter

    Jie Li1,3,*, Rongwen Wang2, Yongtao Hu1,3, Jinjun Li1

    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 73-90, 2024, DOI:10.32604/sdhm.2023.044023

    Abstract The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains. However, in real-world scenarios, accurate predictions are challenging due to various interferences. This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter (KF). The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments. By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect of metals, it becomes possible… More > Graphic Abstract

    A Novel Method for Aging Prediction of Railway Catenary Based on Improved Kalman Filter

  • Open Access

    ARTICLE

    Numerical Simulations of the Flow Field around a Cylindrical Lightning Rod

    Wei Guo1, Yanliang Liu1, Xuqiang Wang1, Jiazheng Meng2, Mengqin Hu2, Bo He2,*

    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 19-35, 2024, DOI:10.32604/sdhm.2023.042944

    Abstract As an important lightning protection device in substations, lightning rods are susceptible to vibration and potential structural damage under wind loads. In order to understand their vibration mechanism, it is necessary to conduct flow analysis. In this study, numerical simulations of the flow field around a 330 kV cylindrical lightning rod with different diameters were performed using the SST k-ω model. The flow patterns in different segments of the lightning rod at the same reference wind speed (wind speed at a height of 10 m) and the flow patterns in the same segment at different reference wind speeds were investigated. The variations… More >

Displaying 1-10 on page 1 of 315. Per Page