Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (395)
  • Open Access

    ARTICLE

    A Method for Preventing Crack Propagation in a Steel Gas Conduit Reinforced with Composite Overlays

    Nurlan Zhangabay1,*, Ulanbator Suleimenov1, Marco Bonopera2,*, Ulzhan Ibraimova1, Shairbek Yeshimbetov3

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 773-787, 2025, DOI:10.32604/sdhm.2025.064980 - 30 June 2025

    Abstract This research presents a numerical simulation methodology for optimizing circular composite overlays’ dimensions and pressure characteristics with orthotropic mechanical properties, specifically, for metal conduits with temperature-dependent elastoplastic behavior. The primary objective of the proposed method is to prevent crack propagation during pressure surges from operational to critical levels. This study examines the “Beineu-Bozoy-Shymkent” steel gas conduit, examining its performance across a temperature range of −40 to +50°C. This work builds on prior research on extended avalanche destruction in steel gas conduits and crack propagation prevention techniques. The analysis was conducted using a dynamic finite-element approach… More >

  • Open Access

    ARTICLE

    Energy Dissipation and Stiffness Assessment: A Study on RC Frame Joints Reinforced with UHPSFRC

    Trung-Hieu Tran*

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 869-886, 2025, DOI:10.32604/sdhm.2025.064902 - 30 June 2025

    Abstract The design principles for conventional reinforced concrete structures have gradually transitioned to seismic-resistant design since the 1970s. However, until recently, the implementation of strength capacity and ductility design has not been rigorously enforced in many developing countries that are prone to seismic risks. Numerous studies have evaluated the effectiveness of joint behavior based on both ductile and non-ductile designs under cyclic loading. Previous research has demonstrated that enhancing joint regions with Ultra-High Performance Steel Fiber Reinforced Concrete (UHPSFRC) significantly improves the seismic resistance of structural components. This paper presents a detailed analysis of the considerable… More >

  • Open Access

    ARTICLE

    Sensitive Analysis on the Compressive and Flexural Strength of Carbon Nanotube-Reinforced Cement Composites Using Machine Learning

    Ahed Habib1,*, Mohamed Maalej2, Samir Dirar3, M. Talha Junaid2, Salah Altoubat2

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 789-817, 2025, DOI:10.32604/sdhm.2025.064882 - 30 June 2025

    Abstract Carbon nanotube-reinforced cement composites have gained significant attention due to their enhanced mechanical properties, particularly in compressive and flexural strength. Despite extensive research, the influence of various parameters on these properties remains inadequately understood, primarily due to the complex interactions within the composites. This study addresses this gap by employing machine learning techniques to conduct a sensitivity analysis on the compressive and flexural strength of carbon nanotube-reinforced cement composites. It systematically evaluates nine data-preprocessing techniques and benchmarks eleven machine-learning algorithms to reveal trade-offs between predictive accuracy and computational complexity, which has not previously been explored… More >

  • Open Access

    ARTICLE

    Investigation of Attention Mechanism-Enhanced Method for the Detection of Pavement Cracks

    Tao Jin1,*, Siqi Gu1, Zhekun Shou1, Hong Shi2, Min Zhang2

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 903-918, 2025, DOI:10.32604/sdhm.2025.063887 - 30 June 2025

    Abstract The traditional You Only Look Once (YOLO) series network models often fail to extract satisfactory features for road detection, due to the limited number of defect images in the dataset. Additionally, most open-source road crack datasets contain idealized cracks that are not suitable for detecting early-stage pavement cracks with fine widths and subtle features. To address these issues, this study collected a large number of original road surface images using road detection vehicles. A large-capacity crack dataset was then constructed, with various shapes of cracks categorized as either cracks or fractures. To improve the training… More >

  • Open Access

    ARTICLE

    Optimization of Structure and Mechanical Performance Analysis of Double-Layer Hole Oil Boom in Rapid River Channels

    Liqiong Chen1, Jie Pang1, Kai Zhang1,*, Juemei Pang2, Haonan Liu3, Quan Fang1

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 937-952, 2025, DOI:10.32604/sdhm.2025.063177 - 30 June 2025

    Abstract In order to reduce the ecological environmental pollution and economic losses caused by oil spill accidents from cross-river oil pipelines, this paper studies the structures of oil containment booms used for intercepting oil spills in rapid rivers and proposes a new type of double-layer hole oil containment boom. By establishing a solid mechanics model, the geometric deformation and stress-strain distribution patterns of the double-layer hole oil containment boom under rapid flow velocities were analyzed. Additionally, the impact of the skirt angle, hole size, and porosity on the mechanical properties of the new oil containment boom More >

  • Open Access

    ARTICLE

    Cable-Stayed Bridge Model Updating Based on Response Surface Method

    Yao Lu, Xintong Huo, Guangzhen Qu, Yanjun Li, Lei Wang*

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 919-935, 2025, DOI:10.32604/sdhm.2025.062537 - 30 June 2025

    Abstract A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model (FEM) that accurately reflects the characteristics of the actual bridge structure. Firstly, an initial FEM was established by the large-scale finite element software ANSYS, and the modal analysis was carried out on the dynamic response measured by the actual bridge structural health monitoring system. The initial error was obtained by comparing the dynamic characteristics of the measured data with those of the initial finite element model. Then, the second-order… More >

  • Open Access

    ARTICLE

    Fast Mixture Distribution Optimization for Rain-Flow Matrix of a Steel Arch Bridge by REBMIX Algorithm

    Yuliang He1, Weihong Lou1, Da Hang2, Youhua Su3,*

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 887-902, 2025, DOI:10.32604/sdhm.2025.062070 - 30 June 2025

    Abstract The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges. Therefore, determining the optimal stress spectrum model is crucial for further fatigue reliability analysis. This study investigates the performance of the REBMIX algorithm in modeling both univariate (stress range) and multivariate (stress range and mean stress) distributions of the rain-flow matrix for a steel arch bridge, using Akaike’s Information Criterion (AIC) as a performance metric. Four types of finite mixture distributions—Normal, Lognormal, Weibull, and Gamma—are employed to model the stress range. More >

  • Open Access

    ARTICLE

    Research on a Simulation Platform for Typical Internal Corrosion Defects in Natural Gas Pipelines Based on Big Data Analysis

    Changchao Qi1, Lingdi Fu1, Ming Wen1, Hao Qian2, Shuai Zhao1,*

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 1073-1087, 2025, DOI:10.32604/sdhm.2025.061898 - 30 June 2025

    Abstract The accuracy and reliability of non-destructive testing (NDT) approaches in detecting interior corrosion problems are critical, yet research in this field is limited. This work describes a novel way to monitor the structural integrity of steel gas pipelines that uses advanced numerical modeling techniques to anticipate fracture development and corrosion effects. The objective is to increase pipeline dependability and safety through more precise, real-time health evaluations. Compared to previous approaches, our solution provides higher accuracy in fault detection and quantification, making it ideal for pipeline integrity monitoring in real-world applications. To solve this issue, statistical… More >

  • Open Access

    ARTICLE

    A Combined Denoising Method of Adaptive VMD and Wavelet Threshold for Gear Health Monitoring

    Guangfei Jia*, Jinqiu Yang, Hanwen Liang

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 1057-1072, 2025, DOI:10.32604/sdhm.2025.061805 - 30 June 2025

    Abstract Considering the noise problem of the acquisition signals from mechanical transmission systems, a novel denoising method is proposed that combines Variational Mode Decomposition (VMD) with wavelet thresholding. The key innovation of this method lies in the optimization of VMD parameters K and using the improved Horned Lizard Optimization Algorithm (IHLOA). An inertia weight parameter is introduced into the random walk strategy of HLOA, and the related formula is improved. The acquisition signal can be adaptively decomposed into some Intrinsic Mode Functions (IMFs), and the high-noise IMFs are identified based on a correlation coefficient-variance method. Further noise… More > Graphic Abstract

    A Combined Denoising Method of Adaptive VMD and Wavelet Threshold for Gear Health Monitoring

  • Open Access

    ARTICLE

    Hydration Heat Analysis and Crack Control of Composite Box Girders with Corrugated Steel Webs in Prefabrication

    Xuefeng Wang1,2, Haiqing Cao1,2, Ke Jiao3,*, Aoxiang Li1,2, Zhongwei Li1,2

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 985-1010, 2025, DOI:10.32604/sdhm.2025.061554 - 30 June 2025

    Abstract This study examines the temperature field distribution characteristics and temperature effects during the prefabrication of composite box girders with corrugated steel webs (CBGCSWs), aiming to provide practical recommendations for controlling temperature-induced cracking and technical guidance for concrete mix proportions and placement processes. Based on field measurement data, a three-dimensional finite element model was developed to simulate the temperature effects at critical locations during the prefabrication phase. By varying the concrete mix proportions, initial casting temperature, and ambient temperature, the study elucidates the variation patterns of the temperature field during precast placement. The results show that… More >

Displaying 1-10 on page 1 of 395. Per Page