Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (331)
  • Open Access

    ARTICLE

    A Comprehensive Investigation on Shear Performance of Improved Perfobond Connector

    Caiping Huang*, Zihan Huang, Wenfeng You

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 299-320, 2024, DOI:10.32604/sdhm.2024.047850

    Abstract This paper presents an easily installed improved perfobond connector (PBL) designed to reduce the shear concentration of PBL. The improvement of PBL lies in changing the straight penetrating rebar to the Z-type penetrating rebar. To study the shear performance of improved PBL, two PBL test specimens which contain straight penetrating rebar and six improved PBL test specimens which contain Z-type penetrating rebars were designed and fabricated, and push-out tests of these eight test specimens were carried out to investigate and compare the shear behavior of PBL. Additionally, Finite Element Analysis (FEA) models of the PBL… More >

  • Open Access

    ARTICLE

    Coupling Effect of Cryogenic Freeze-Thaw Cycles and Chloride Ion Erosion Effect in Pre-Cracked Reinforced Concrete

    Yang Li, Sibo Jiang*, Ruixin Lan

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 255-276, 2024, DOI:10.32604/sdhm.2024.047776

    Abstract Chloride (Cl) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas (LNG) storage tanks and other polar offshore structures. This study investigates the impact of different low-temperature cycles (20°C, –80°C, and −160°C) and concrete specimen crack widths (0, 0.3, and 0.6 mm) on the Cl ion diffusion performance through rapid erosion tests conducted on pre-cracked concrete. The results show that the minimum temperature and crack width of freeze-thaw cycles enhance the erosive effect of chloride ions. The Cl ion concentration and growth rate increased with the increasing crack More > Graphic Abstract

    Coupling Effect of Cryogenic Freeze-Thaw Cycles and Chloride Ion Erosion Effect in Pre-Cracked Reinforced Concrete

  • Open Access

    ARTICLE

    Shield Excavation Analysis: Ground Settlement & Mechanical Responses in Complex Strata

    Baojun Qin1, Guangwei Zhang1, Wei Zhang2,*

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 341-360, 2024, DOI:10.32604/sdhm.2024.047405

    Abstract This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this construction method impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnel segments. It investigates the impact of shield construction on surface settlement, mechanical characteristics of nearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizing the Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using the ABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force, and… More >

  • Open Access

    ARTICLE

    Damage Diagnosis of Bleacher Based on an Enhanced Convolutional Neural Network with Training Interference

    Chaozhi Cai*, Xiaoyu Guo, Yingfang Xue, Jianhua Ren

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 321-339, 2024, DOI:10.32604/sdhm.2024.045831

    Abstract Bleachers play a crucial role in practical engineering applications, and any damage incurred during their operation poses a significant threat to the safety of both life and property. Consequently, it becomes imperative to conduct damage diagnosis and health monitoring of bleachers. The intricate structure of bleachers, the varied types of potential damage, and the presence of similar vibration data in adjacent locations make it challenging to achieve satisfactory diagnosis accuracy through traditional time-frequency analysis methods. Furthermore, field environmental noise can adversely impact the accuracy of bleacher damage diagnosis. To enhance the accuracy and anti-noise capabilities… More > Graphic Abstract

    Damage Diagnosis of Bleacher Based on an Enhanced Convolutional Neural Network with Training Interference

  • Open Access

    ARTICLE

    Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade

    Haixia Kou1,*, Bowen Yang1, Xuyao Zhang2, Xiaobo Yang1, Haibo Zhao1

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 277-297, 2024, DOI:10.32604/sdhm.2024.045023

    Abstract Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades (referred to as blades), this paper takes the main beam structure of the blade with a rectangular cross-section as the simulation object and establishes a composite laminate rectangular beam structure that simultaneously includes the flange, web, and adhesive layer, referred to as the blade main beam sub-structure specimen, through the definition of blade sub-structures. This paper examines the progressive damage evolution law of the composite laminate rectangular beam utilizing an improved 3D Hashin failure criterion, cohesive zone model, B-K failure More > Graphic Abstract

    Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade

  • Open Access

    ARTICLE

    Numerical Exploration of Asymmetrical Impact Dynamics: Unveiling Nonlinearities in Collision Problems and Resilience of Reinforced Concrete Structures

    AL-Bukhaiti Khalil1, Yanhui Liu1,*, Shichun Zhao1, Daguang Han2

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 223-254, 2024, DOI:10.32604/sdhm.2024.044751

    Abstract This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing on geometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision. The initial discussion revolves around the stress and strain of large deformation during a collision, followed by explanations of the fundamental finite element solution method for addressing such issues. The hourglass mode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailed and implemented within the finite element framework. The paper further investigates the dynamic response and failure modes of Reinforced Concrete (RC)… More >

  • Open Access

    ARTICLE

    Research on Sleeve Grouting Density Detection Based on the Impact Echo Method

    Pu Zhang1, Yingjun Li1, Xinyu Zhu1, Shizhan Xu1, Pinwu Guan1,*, Wei Liu2, Yanwei Guo2, Haibo Wang2

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 143-159, 2024, DOI:10.32604/sdhm.2024.046986

    Abstract Grouting defects are an inherent challenge in construction practices, exerting a considerable impact on the operational structural integrity of connections. This investigation employed the impact-echo technique for the detection of grouting anomalies within connections, enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes. A series of grouting completeness assessments were meticulously conducted, taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement. The findings revealed that: (i) the energy distribution for the high-strength concrete cohort predominantly occupied the frequency bands More >

  • Open Access

    ARTICLE

    Numerical Analysis of Cold-Formed Thin-Walled Steel Short Columns with Pitting Corrosion during Bridge Construction

    Hongzhang Wang1, Jing Guo1, Shanjun Yang1, Chaoheng Cheng2, Jing Chen3,*, Zhihao Chen3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 181-196, 2024, DOI:10.32604/sdhm.2024.044628

    Abstract Pitting corrosion is harmful during bridge construction, which will lead to uneven roughness of steel surfaces and reduce the thickness of steel. Hence, the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied, and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion. In detail, the failure modes and load-displacement curves of specimens with different locations, area ratios, and depths are obtained through a large number of non-linear finite element analysis. As for the specimens with pitting… More > Graphic Abstract

    Numerical Analysis of Cold-Formed Thin-Walled Steel Short Columns with Pitting Corrosion during Bridge Construction

  • Open Access

    ARTICLE

    Investigation of FRP and SFRC Technologies for Efficient Tunnel Reinforcement Using the Cohesive Zone Model

    Gang Niu1,2, Zhaoyang Jin2, Wei Zhang3,*, Yiqun Huang3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 161-179, 2024, DOI:10.32604/sdhm.2023.044580

    Abstract Amid urbanization and the continuous expansion of transportation networks, the necessity for tunnel construction and maintenance has become paramount. Addressing this need requires the investigation of efficient, economical, and robust tunnel reinforcement techniques. This paper explores fiber reinforced polymer (FRP) and steel fiber reinforced concrete (SFRC) technologies, which have emerged as viable solutions for enhancing tunnel structures. FRP is celebrated for its lightweight and high-strength attributes, effectively augmenting load-bearing capacity and seismic resistance, while SFRC’s notable crack resistance and longevity potentially enhance the performance of tunnel segments. Nonetheless, current research predominantly focuses on experimental analysis,… More > Graphic Abstract

    Investigation of FRP and SFRC Technologies for Efficient Tunnel Reinforcement Using the Cohesive Zone Model

  • Open Access

    ARTICLE

    Intelligent Sensing and Control of Road Construction Robot Scenes Based on Road Construction

    Zhongping Chen, Weigong Zhang*

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 111-124, 2024, DOI:10.32604/sdhm.2023.043563

    Abstract Automatic control technology is the basis of road robot improvement, according to the characteristics of construction equipment and functions, the research will be input type perception from positioning acquisition, real-world monitoring, the process will use RTK-GNSS positional perception technology, by projecting the left side of the earth from Gauss-Krueger projection method, and then carry out the Cartesian conversion based on the characteristics of drawing; steering control system is the core of the electric drive unmanned module, on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles, the steering… More >

Displaying 11-20 on page 2 of 331. Per Page