Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24,618)
  • Open Access

    ARTICLE

    Effects of Non-Newtonian Ferrofluids on the Performance Characteristics of Long Journal Bearings

    J.R. Lin1, P.J. Li2, T.C. Hung3

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 419-434, 2013, DOI:10.3970/fdmp.2013.009.419

    Abstract On the basis of the Shliomis ferrofluid model (1972) together with the micro-continuum theory of Stokes (1966), the influences of non-Newtonian ferrofluids on the steady-state performance of long journal bearings have been investigated in the present paper. Analytical solutions for bearing performances are obtained from the non-Newtonian ferrofluid Reynolds-type equation. Comparing with the Newtonian non-ferrofluid case, the effects of non-Newtonian ferrofluids with applied magnetic fields provide an increase in the zero pressure-gradient angle and the load capacity, and a decrease in the friction parameter, especially for a larger non-Newtonian couple stress parameter and magnetic Langevin’s More >

  • Open Access

    ARTICLE

    Comparison of EHD-Driven Instability of Thick and Thin Liquid Films by a Transverse Electric Field

    Payam Sharifi1, Asghar Esmaeeli2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 389-418, 2013, DOI:10.3970/fdmp.2013.009.389

    Abstract This study aims to explore the effect of liquid film thickness on the electrohydrodynamic-driven instability of the interface separating two horizontal immiscible liquid layers. The fluids are confined between two electrodes and the light and less conducting liquid is overlaid on the heavy and more conducting one. Direct Numerical Simulations (DNSs) are performed using a front tracking/finite difference scheme in conjunction with Taylor-Melcher leaky dielectric model. For the range of physical parameters used here, it is shown that for a moderately thick lower liquid layer, the interface instability leads to formation of several liquid columns… More >

  • Open Access

    ARTICLE

    Numerical Study of Natural Convection in an Inclined Triangular Cavity for Different Thermal Boundary Conditions: Application of the Lattice Boltzmann Method

    Ahmed Mahmoudi1,2, Imen Mejri1, Mohamed Ammar Abbassi1, Ahmed Omri1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 353-388, 2013, DOI:10.3970/fdmp.2013.009.353

    Abstract A double-population Lattice Boltzmann Method (LBM) is applied to solve the steady-state laminar natural convective heat-transfer problem in a triangular cavity filled with air (Pr = 0.71). Two different boundary conditions are implemented for the vertical and inclined boundaries: Case I) adiabatic vertical wall and inclined isothermal wall, Case II) isothermal vertical wall and adiabatic inclined wall. The bottom wall is assumed to be at a constant temperature (isothermal) for both cases. The buoyancy effect is modeled in the framework of the well-known Boussinesq approximation. The velocity and temperature fields are determined by a D2Q9 More >

  • Open Access

    ARTICLE

    Numerical Simulation of Liquid Phase Diffusion Growth of SiGe Single Crystals under Zero Gravity

    M. Sekhon1, N. Armour1, S. Dost1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 331-351, 2013, DOI:10.3970/fdmp.2013.009.331

    Abstract Liquid Phase Diffusion (LPD) growth of SixGe1-x single crystals has been numerically simulated under zero gravity. The objective was to examine growth rate and silicon concentration distribution in the LPD grown crystals under diffusion dominated mass transport prior to the planned LPD space experiments on the International Space Station (ISS). Since we are interested in predicting growth rate and crystal composition, the gravitational fluctuation of the ISS (g-jitter) was neglected and the gravity level was taken as zero for simplicity.
    A fixed grid approach has been utilized for the simulation. An integrated top-level solver was developed… More >

  • Open Access

    ARTICLE

    A Finite Element Investigation of Elastic Flow Asymmetries in Cross-Slot Geometries Using a Direct Steady Solver

    A. Filali1, L. Khezzar1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 307-329, 2013, DOI:10.3970/fdmp.2013.009.307

    Abstract Numerical investigations of purely-elastic instabilities occurring in creeping flows are reported in planar cross-slot geometries with both sharp and round corners. The fluid is described by the upper-convected Maxwell model, and the governing equations are solved using the finite element technique based on a steady (non-iterative) direct solver implemented in the POLYFLOWcommercial software (version 14.0). Specifically, extensive simulations were carried out on different meshes, with and without the use of flow perturbations, for a wide range of rheological parameters. Such simulations show the onset of flow asymmetries above a critical Deborah number (De). The effect More >

  • Open Access

    ARTICLE

    Effect of Double Stratification on Free Convection in a Power-Law Fluid Saturated Porous Medium

    D. Srinivasacharya1, G. Swamy Reddy1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 291-305, 2013, DOI:10.3970/fdmp.2013.009.291

    Abstract Free convection and related heat and mass transfer along a vertical plate embedded in a power-law fluid saturated Darcy porous medium with thermal and solutal stratification effects is studied. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and then solved numerically by means of a shooting method. The variations of non-dimensional velocity, temperature and concentration are presented graphically for various values of the power-law index, and of the thermal and solutal stratification parameters. In addition, the heat and mass transfer rates are tabulated for different values of the governing More >

  • Open Access

    ARTICLE

    Convective Film Condensation in an Inclined Channel with Porous Layer

    Lazhar Merouani1, Belkacem Zeghmati2, Azeddine Belhamri3

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 267-290, 2013, DOI:10.3970/fdmp.2013.009.267

    Abstract The present work is a numerical study of laminar film condensation from vapor-gas mixtures in an inclined channel with an insulated upper wall and an isothermal lower wall coated with a thin porous material. A two-dimensional model is developed using a set of complete boundary layer equations for the liquid film and the steam-air mixture while the Darcy-Brinkman-Forchheimer approach is used for the porous material. The governing equations are discretized with an implicit finite difference scheme. The resulting systems of algebraic equations are numerically solved using Gauss and Thomas algorithms. The numerical results enable to More >

  • Open Access

    ARTICLE

    Effect of Suspended Particles on the Onset of Thermal Convection in a Compressible Viscoelastic Fluid in a Darcy-Brinkman Porous Medium

    G. C. Rana1, R. C. Thakur2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 251-265, 2013, DOI:10.3970/fdmp.2013.009.251

    Abstract In this paper, the effect of suspended particles on thermal convection in a compressible viscoelastic fluid hosted in a porous medium is considered. For the porous medium, the Brinkman model is employed with the Rivlin-Ericksen approach used in parallel to describe the rheological behaviour of the viscoelastic fluid. By applying a normal mode analysis method, a dispersion relation is derived and solved analytically. It is observed that the medium permeability, suspended particles, gravity field and viscoelasticity introduce oscillatory modes. For stationary convection, it is found that the Darcy-Brinkman number has a stabilizing effect whereas the More >

  • Open Access

    ARTICLE

    Mixed Convection Investigation in an Opened Partitioned Heated Cavity

    O. Mahrouche1, M. Najam1, M. El Alami1,2, M. Faraji1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 235-250, 2013, DOI:10.3970/fdmp.2013.009.235

    Abstract Mixed convection in a rectangular partitioned cavity equipped with two heated partitions at a constant temperature, TC, is investigated numerically. The right vertical wall is featured by two openings (C1 and C2) for admission of cooled air along the horizontal direction, while the lower wall has a single outlet opening (C3) along the vertical axis. The left vertical wall is assumed to be isothermal at temperature TC, while the other walls are cooled to a temperature TF < TC. The results show that the flow and heat transfer depend significantly on Reynolds number, Re, and block height, B. Correlation More >

  • Open Access

    ARTICLE

    Comparison and a Possible Source of Disagreement between Experimental and Numerical Results in a Czochralski Model

    V. Haslavsky, E. Miroshnichenko, E. Kit, A. Yu. Gelfgat

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 209-234, 2013, DOI:10.3970/fdmp.2013.009.209

    Abstract Experimental and numerical observations of oscillatory instability of melt flow in a Czochralski model are compared, and a disagreement observed at small crystal dummy rotation rates is addressed. To exclude uncertainties connected with flow along the free surface, the latter is covered by a no-slip thermally insulating ring. Experiments reveal an appearance of oscillations at temperature differences smaller than the numerically predicted critical ones. At the same time, a steep increase of the oscillations amplitude is observed just beyond the computed threshold values. By increasing the dummy rotation gradually, we are able to qualitatively confirm More >

Displaying 20821-20830 on page 2083 of 24618. Per Page