Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24,618)
  • Open Access

    ARTICLE

    WALL HEAT FLUX PARTITIONING ANALYSIS FOR SUBCOOLED FLOW BOILING OF WATER-ETHANOL MIXTURE IN CONVENTIONAL CHANNEL

    B.G. Suhasa,* , A. Sathyabhamab, Kavadiki Veerabhadrappaa , R. Suresh Kumara, U. Kiran Kumara

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.16

    Abstract In the present study, heat transfer coefficient of water-ethanol mixture in the subcooled boiling region is determined in a rectangular conventional channel (Channel size ≥3 mm). When the heat flux and mass flux increase it is observed that heat transfer coefficient increases. But the effect of heat flux is significant when compared with that of mass flux in the subcooled boiling region. It is found that maximum and minimum heat transfer coefficient are observed for mixture with 25% Ethanol volume fraction and 75% Ethanol volume fraction respectively. Wall heat flux partitioning analyses is carried out More >

  • Open Access

    ARTICLE

    EFFECTS OF NON-UNIFORM SLOT SUCTION/INJECTION AND CHEMICAL REACTION ON MIXED CONVECTIVE MHD FLOW ALONG A VERTICAL WEDGE EMBEDDED IN A POROUS MEDIUM

    M. Ganapathiraoa,∗ , Ali J. Chamkhab, N. Srinivasa Raoc

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-13, 2019, DOI:10.5098/hmt.13.15

    Abstract In this investigation, our objective is to study the effect of non-uniform slot suction or injection into a steady mixed convective MHD boundary layer flow over a vertical wedge embedded in a porous medium in the presence of chemical reaction. The wall of the wedge is embedded in a uniform porous medium in order to allow possible fluid wall suction or injection. The surface of the wedge is maintained at a variable wall temperature and concentration. The fluid is assumed to be viscous, incompressible and electrically conducting; and the magnetic field is applied transversally in… More >

  • Open Access

    ARTICLE

    INFLUENCE OF MHD ON FREE CONVECTION OF NON-NEWTONIAN FLUIDS OVER A VERTICAL PERMEABLE PLATE IN POROUS MEDIA WITH INTERNAL HEAT GENERATION

    Heng-Pin Hsua , Chuo-Jeng Huangb,*, Herchang Aya

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.14

    Abstract The heat and mass transfer characteristics of the influence of uniform blowing/suction and MHD (magnetohydrodynamic) on the free convection of non-Newtonian fluids over a vertical plate in porous media with internal heat generation and Soret/Dufour effects are numerically analyzed. The surface of the vertical plate has a uniform wall temperature and uniform wall concentration (UWT/UWC). The numerical modeling of this problem attracts considerable attention, owing to its practical applications in biological sciences, electronic cooling, advanced nuclear systems, etc. The transformed governing equations are solved by Keller box method. Comparisons showed excellent agreement with the numerical More >

  • Open Access

    ARTICLE

    THERMAL TOPOLOGY OPTIMIZATION DESIGN OF SPINDLE STRUCTURE WITH A HYBRID CELLULAR AUTOMATON METHOD

    Xiaolei Denga,b,c,*, Jin Wangd , Hongcheng Shena, Jinyu Zhoua, Jianchen Wanga,c, Changxiong Xiea, Jianzhong Fub

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-6, 2019, DOI:10.5098/hmt.13.13

    Abstract A hybrid cellular automaton model combined with a finite element method for thermal topology optimization of spindle structure is developed. The higher order 8-node element and von Neumann strategy are employed for the finite element and the cellular element, respectively. The local sensitivity filtering algorithm and the weight approach are applied. The four validating studies of two-dimensional structure for thermal topology optimization are carried out. The structure evolution and thermal distribution evolution of thermal topology optimization are investigated. The results show the developed hybrid method is more efficient for thermal topology optimization. Meanwhile, the thermal More >

  • Open Access

    REVIEW

    REVIEW OF VARIOUS THIN HEAT SPREADER VAPOR CHAMBER DESIGNS, PERFORMANCE, LIFETIME RELIABILITY AND APPLICATION

    Masataka Mochizukia,*,†, Thang Nguyenb

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-6, 2019, DOI:10.5098/hmt.13.12

    Abstract The cooling device for computers and electronics is getting smaller and thinner year after year, especially for the mobile handheld device such as smartphone which is the most popular gadget and widely use nowadays. It seems that in the current trend every 6-12 months a new model of smartphone is introduced and it was packed with faster processing processor, memories, and graphics, higher density battery, higher resolution for camera and video and so on. The drawback is the device getting hotter due to the increase of heat dissipation caused by faster computing. The traditional method… More >

  • Open Access

    ARTICLE

    EFFECT OF ABSORBER TYPES OF CONVENTIONAL DISTILLERS ON THE AMOUNT OF DISTILLED WATER PRODUCTION

    M. Mirmanto*, M. Wirawan, I.M.A. Sayoga, S. Syahrul, M. Faisal, A. Abdullah

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-7, 2019, DOI:10.5098/hmt.13.10

    Abstract Due to clean water crisis in the dry season in some places in Indonesia, experiments to find the best distiller to provide distilled water were performed. The long-term goal of this study is to create a distiller that is cheap, simple, easy to make, durable, low maintenance, but produces plenty of distilled water. Three identical conventional distillers with different absorbers had been tested for about 6 days in May 2019. These three distillers were used to evaporate and condense seawater to be distilled water. The absorbers types employed were type A, B, and C. The More >

  • Open Access

    ARTICLE

    STUDY ON HEAT AND MASS TRANSFER AND NONLINEAR CHARACTERISTICS WITH THERMAL AND SOLUTAL SOURCE IN A CAVITY

    Yubing Lia , Mo Yanga,*, Jian Lib , Zhiyun Wanga

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.11

    Abstract Thermalsolutal convection induced by mass and heat source in horizontal cavity is investigated numerically based on SIMPLE algorithm with QUICK scheme. The high-concentration heat source is placed in the square cavity, and the cavity wall is low temperature and low concentration. The smoke is used as the diffusion medium, and the flow field, temperature and concentration of the fluid under different Rayleigh number, buoyancy ratio Nc, Soret numbers and Dufour numbers are analyzed systematically. Parameter study demonstrates that heat and mass transfer of thermosolutal convection are enhanced with increasing Rayleigh number or buoyancy ratio, and More >

  • Open Access

    ARTICLE

    TURBINE BLADE LEADING EDGE IMPINGEMENT COOLING FROM NORMAL OR TANGENTIAL JETS WITH CROSSFLOW EFFECT

    Nian Wang, Mingjie Zhang, Sulaiman Alsaleem, Lesley M. Wright, Je-Chin Han*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-13, 2019, DOI:10.5098/hmt.13.9

    Abstract This study investigates turbine blade, leading edge cooling from normal or tangential impinging jets. These jets impinging on a semi-cylindrical, inner surface are constrained to discharge in a single direction. The downstream jets are affected by the crossflow originating from the upstream jets. To understand the thermal flow physics, numerical simulations are performed using the realizable k- turbulence model. Both the experimental and numerical results show crossflow is more detrimental to normal impinging jets than the tangential jets. Furthermore, with a significant temperature drop across the jet plate, designers must correctly interpret jet impingement results. More >

  • Open Access

    ARTICLE

    OPERATING CHARACTERISTICS OF NAPHTHALENE HEAT PIPES

    B. Orra,* , R. Singha, A. Akbarzadehb , M. Mochizukic

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-7, 2019, DOI:10.5098/hmt.13.8

    Abstract Heat pipes that operate in the medium temperature range (550-700 K) are very rarely used in industry despite the potential demand of use. There is no consensus about suitable working fluids in this temperature range as research on possible working fluids is limited. One proposed working fluid is naphthalene. In this paper, a number of tests have been undertaken on both an individual naphthalene heat pipe and a naphthalene heat pipe heat exchanger. Unlike room temperature working fluids, medium temperature working fluids are solid at ambient temperature therefore they have unusual transient start up behaviour.… More >

  • Open Access

    ARTICLE

    NUMERICAL AND EXPERIMENTAL INVESTIGATIONS OF NATURAL CONVECTIVE HEAT TRANSFER FROM TWO-SIDED DIAGONALLY INCLINED SQUARE PLATES HAVING A FINITE THICKNESS

    Rafiq Manna* , Patrick H. Oosthuizen

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-12, 2019, DOI:10.5098/hmt.13.7

    Abstract Natural convective heat transfer from two-sided diagonally inclined square plates having various thicknesses has been numerically and experimentally investigated. The aim of this work is to determine the influence of the plate thickness and diagonal inclination angle on the heat transfer rate for various flow regimes. The mean heat transfer rate was numerically obtained using ANSYS FLUENT© and experimentally determined using the Lumped Capacity Method. The results indicate that the plate thickness does not have a significant influence on the heat transfer rate while the diagonal inclination angle significantly influences the heat transfer rate especially More >

Displaying 16421-16430 on page 1643 of 24618. Per Page