Open Access
ARTICLE
A Dynamic Prediction Approach for Wire Icing Thickness under Extreme Weather Conditions Based on WGAN-GP-RTabNet
1 High Voltage Equipment Research Institute, State Grid Xinjiang Electric Power Co., Ltd., Electric Power Research Institute, Urumqi, 830013, China
2 Xinjiang Key Laboratory of Extreme Environment Operation and Detection Technology of Power Transmission & Transformation Equipment, Urumqi, 830013, China
3 College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
* Corresponding Author: Mingguan Zhao. Email:
(This article belongs to the Special Issue: Computational Intelligent Systems for Solving Complex Engineering Problems: Principles and Applications-II)
Computer Modeling in Engineering & Sciences 2025, 142(2), 2091-2109. https://doi.org/10.32604/cmes.2025.059169
Received 29 September 2024; Accepted 23 December 2024; Issue published 27 January 2025
Abstract
Ice cover on transmission lines is a significant issue that affects the safe operation of the power system. Accurate calculation of the thickness of wire icing can effectively prevent economic losses caused by ice disasters and reduce the impact of power outages on residents. However, under extreme weather conditions, strong instantaneous wind can cause tension sensors to fail, resulting in significant errors in the calculation of icing thickness in traditional mechanics-based models. In this paper, we propose a dynamic prediction model of wire icing thickness that can adapt to extreme weather environments. The model expands scarce raw data by the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) technique, records historical environmental information by a recurrent neural network, and evaluates the ice warning levels by a classifier. At each time point, the model diagnoses whether the current sensor failure is due to icing or strong winds. If it is determined that the wire is covered with ice, the icing thickness will be calculated after the wind-induced tension is removed from the ice-wind coupling tension. Our new model was evaluated using data from the power grid in an area with extreme weather. The results show that the proposed model has significant improvements in accuracy compared with traditional models.Keywords
Cite This Article

This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.