Open Access iconOpen Access

ARTICLE

crossmark

Bearing Fault Diagnosis with DDCNN Based on Intelligent Feature Fusion Strategy in Strong Noise

Chaoqian He1,2, Runfang Hao1,2,*, Kun Yang1,2, Zhongyun Yuan1,2, Shengbo Sang1,2, Xiaorui Wang1,2

1 College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
2 Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan, 030024, China

* Corresponding Author: Runfang Hao. Email: email

(This article belongs to the Special Issue: Trends in Machine Learning and Internet of Things for Industrial Applications)

Computers, Materials & Continua 2023, 77(3), 3423-3442. https://doi.org/10.32604/cmc.2023.045718

Abstract

Intelligent fault diagnosis in modern mechanical equipment maintenance is increasingly adopting deep learning technology. However, conventional bearing fault diagnosis models often suffer from low accuracy and unstable performance in noisy environments due to their reliance on a single input data. Therefore, this paper proposes a dual-channel convolutional neural network (DDCNN) model that leverages dual data inputs. The DDCNN model introduces two key improvements. Firstly, one of the channels substitutes its convolution with a larger kernel, simplifying the structure while addressing the lack of global information and shallow features. Secondly, the feature layer combines data from different sensors based on their primary and secondary importance, extracting details through small kernel convolution for primary data and obtaining global information through large kernel convolution for secondary data. Extensive experiments conducted on two-bearing fault datasets demonstrate the superiority of the two-channel convolution model, exhibiting high accuracy and robustness even in strong noise environments. Notably, it achieved an impressive 98.84% accuracy at a Signal to Noise Ratio (SNR) of −4 dB, outperforming other advanced convolutional models.

Keywords


Cite This Article

APA Style
He, C., Hao, R., Yang, K., Yuan, Z., Sang, S. et al. (2023). Bearing fault diagnosis with DDCNN based on intelligent feature fusion strategy in strong noise. Computers, Materials & Continua, 77(3), 3423-3442. https://doi.org/10.32604/cmc.2023.045718
Vancouver Style
He C, Hao R, Yang K, Yuan Z, Sang S, Wang X. Bearing fault diagnosis with DDCNN based on intelligent feature fusion strategy in strong noise. Comput Mater Contin. 2023;77(3):3423-3442 https://doi.org/10.32604/cmc.2023.045718
IEEE Style
C. He, R. Hao, K. Yang, Z. Yuan, S. Sang, and X. Wang, “Bearing Fault Diagnosis with DDCNN Based on Intelligent Feature Fusion Strategy in Strong Noise,” Comput. Mater. Contin., vol. 77, no. 3, pp. 3423-3442, 2023. https://doi.org/10.32604/cmc.2023.045718



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 473

    View

  • 295

    Download

  • 0

    Like

Share Link