Open Access iconOpen Access



Federated Learning on Internet of Things: Extensive and Systematic Review

Meenakshi Aggarwal1, Vikas Khullar1, Sunita Rani2, Thomas André Prola3,4,5, Shyama Barna Bhattacharjee6, Sarowar Morshed Shawon7, Nitin Goyal8,*

1 Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
2 Department of CSE & IT, BPS Mahila Vishwavidyalaya, Khanpur Kalan, Sonipat, Haryana, 131305, India
3 Engineering Research & Innovation Group, Universidad Europea del Atlántico, C/Isabel Torres 21, Santander, 39011, Spain
4 Department of Project Management, Universidad Internacional Iberoamericana, Arecibo, PR, 00613, USA
5 Department of Project Management, Universidade Internacional do Cuanza, Estrada Nacional 250, Bairro Kaluapanda, Cuito-Bié, Angola
6 Department of Computer Science and Engineering, University of Science and Technology Chittagong (USTC), Chattogram, 4202, Bangladesh
7 Deptartment of EEE, University of Science and Technology Chittagong (USTC), Chattogram, 4202, Bangladesh
8 Department of Computer Science and Engineering, School of Engineering and Technology, Central University of Haryana, Mahendragarh, Haryana, 123031, India

* Corresponding Author: Nitin Goyal. Email: email

Computers, Materials & Continua 2024, 79(2), 1795-1834.


The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation. However, FL development for IoT is still in its infancy and needs to be explored in various areas to understand the key challenges for deployment in real-world scenarios. The paper systematically reviewed the available literature using the PRISMA guiding principle. The study aims to provide a detailed overview of the increasing use of FL in IoT networks, including the architecture and challenges. A systematic review approach is used to collect, categorize and analyze FL-IoT-based articles. A search was performed in the IEEE, Elsevier, Arxiv, ACM, and WOS databases and 92 articles were finally examined. Inclusion measures were published in English and with the keywords “FL” and “IoT”. The methodology begins with an overview of recent advances in FL and the IoT, followed by a discussion of how these two technologies can be integrated. To be more specific, we examine and evaluate the capabilities of FL by talking about communication protocols, frameworks and architecture. We then present a comprehensive analysis of the use of FL in a number of key IoT applications, including smart healthcare, smart transportation, smart cities, smart industry, smart finance, and smart agriculture. The key findings from this analysis of FL IoT services and applications are also presented. Finally, we performed a comparative analysis with FL IID (independent and identical data) and non-ID, traditional centralized deep learning (DL) approaches. We concluded that FL has better performance, especially in terms of privacy protection and resource utilization. FL is excellent for preserving privacy because model training takes place on individual devices or edge nodes, eliminating the need for centralized data aggregation, which poses significant privacy risks. To facilitate development in this rapidly evolving field, the insights presented are intended to help practitioners and researchers navigate the complex terrain of FL and IoT.


Cite This Article

APA Style
Aggarwal, M., Khullar, V., Rani, S., Prola, T.A., Bhattacharjee, S.B. et al. (2024). Federated learning on internet of things: extensive and systematic review. Computers, Materials & Continua, 79(2), 1795-1834.
Vancouver Style
Aggarwal M, Khullar V, Rani S, Prola TA, Bhattacharjee SB, Shawon SM, et al. Federated learning on internet of things: extensive and systematic review. Comput Mater Contin. 2024;79(2):1795-1834
IEEE Style
M. Aggarwal et al., "Federated Learning on Internet of Things: Extensive and Systematic Review," Comput. Mater. Contin., vol. 79, no. 2, pp. 1795-1834. 2024.

cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 660


  • 214


  • 0


Share Link