Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    WebFLex: A Framework for Web Browsers-Based Peer-to-Peer Federated Learning Systems Using WebRTC

    Mai Alzamel1,*, Hamza Ali Rizvi2, Najwa Altwaijry1, Isra Al-Turaiki1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4177-4204, 2024, DOI:10.32604/cmc.2024.048370

    Abstract Scalability and information personal privacy are vital for training and deploying large-scale deep learning models. Federated learning trains models on exclusive information by aggregating weights from various devices and taking advantage of the device-agnostic environment of web browsers. Nevertheless, relying on a main central server for internet browser-based federated systems can prohibit scalability and interfere with the training process as a result of growing client numbers. Additionally, information relating to the training dataset can possibly be extracted from the distributed weights, potentially reducing the privacy of the local data used for training. In this research paper, we aim to investigate… More >

  • Open Access

    REVIEW

    A Survey on Blockchain-Based Federated Learning: Categorization, Application and Analysis

    Yuming Tang1,#, Yitian Zhang2,#, Tao Niu1, Zhen Li2,3,*, Zijian Zhang1,3, Huaping Chen4, Long Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2451-2477, 2024, DOI:10.32604/cmes.2024.030084

    Abstract Federated Learning (FL), as an emergent paradigm in privacy-preserving machine learning, has garnered significant interest from scholars and engineers across both academic and industrial spheres. Despite its innovative approach to model training across distributed networks, FL has its vulnerabilities; the centralized server-client architecture introduces risks of single-point failures. Moreover, the integrity of the global model—a cornerstone of FL—is susceptible to compromise through poisoning attacks by malicious actors. Such attacks and the potential for privacy leakage via inference starkly undermine FL’s foundational privacy and security goals. For these reasons, some participants unwilling use their private data to train a model, which… More >

  • Open Access

    REVIEW

    AI Fairness–From Machine Learning to Federated Learning

    Lalit Mohan Patnaik1,5, Wenfeng Wang2,3,4,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1203-1215, 2024, DOI:10.32604/cmes.2023.029451

    Abstract This article reviews the theory of fairness in AI–from machine learning to federated learning, where the constraints on precision AI fairness and perspective solutions are also discussed. For a reliable and quantitative evaluation of AI fairness, many associated concepts have been proposed, formulated and classified. However, the inexplicability of machine learning systems makes it almost impossible to include all necessary details in the modelling stage to ensure fairness. The privacy worries induce the data unfairness and hence, the biases in the datasets for evaluating AI fairness are unavoidable. The imbalance between algorithms’ utility and humanization has further reinforced such worries.… More >

  • Open Access

    ARTICLE

    Person Re-Identification with Model-Contrastive Federated Learning in Edge-Cloud Environment

    Baixuan Tang1,2,#, Xiaolong Xu1,2,#, Fei Dai3, Song Wang4,*

    Intelligent Automation & Soft Computing, Vol.38, No.1, pp. 35-55, 2023, DOI:10.32604/iasc.2023.036715

    Abstract Person re-identification (ReID) aims to recognize the same person in multiple images from different camera views. Training person ReID models are time-consuming and resource-intensive; thus, cloud computing is an appropriate model training solution. However, the required massive personal data for training contain private information with a significant risk of data leakage in cloud environments, leading to significant communication overheads. This paper proposes a federated person ReID method with model-contrastive learning (MOON) in an edge-cloud environment, named FRM. Specifically, based on federated partial averaging, MOON warmup is added to correct the local training of individual edge servers and improve the model’s… More >

  • Open Access

    ARTICLE

    Efficient DP-FL: Efficient Differential Privacy Federated Learning Based on Early Stopping Mechanism

    Sanxiu Jiao1, Lecai Cai2,*, Jintao Meng3, Yue Zhao3, Kui Cheng2

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 247-265, 2024, DOI:10.32604/csse.2023.040194

    Abstract Federated learning is a distributed machine learning framework that solves data security and data island problems faced by artificial intelligence. However, federated learning frameworks are not always secure, and attackers can attack customer privacy information by analyzing parameters in the training process of federated learning models. To solve the problems of data security and availability during federated learning training, this paper proposes an Efficient Differential Privacy Federated Learning Algorithm based on early stopping mechanism (Efficient DP-FL). This method inherits the advantages of differential privacy and federated learning and improves the performance of model training while protecting the parameter information uploaded… More >

  • Open Access

    ARTICLE

    Improving Federated Learning through Abnormal Client Detection and Incentive

    Hongle Guo1,2, Yingchi Mao1,2,*, Xiaoming He1,2, Benteng Zhang1,2, Tianfu Pang1,2, Ping Ping1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 383-403, 2024, DOI:10.32604/cmes.2023.031466

    Abstract Data sharing and privacy protection are made possible by federated learning, which allows for continuous model parameter sharing between several clients and a central server. Multiple reliable and high-quality clients must participate in practical applications for the federated learning global model to be accurate, but because the clients are independent, the central server cannot fully control their behavior. The central server has no way of knowing the correctness of the model parameters provided by each client in this round, so clients may purposefully or unwittingly submit anomalous data, leading to abnormal behavior, such as becoming malicious attackers or defective clients.… More >

  • Open Access

    ARTICLE

    Blockchain-Based Cognitive Computing Model for Data Security on a Cloud Platform

    Xiangmin Guo1,2, Guangjun Liang1,2,*, Jiayin Liu1,2, Xianyi Chen3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3305-3323, 2023, DOI:10.32604/cmc.2023.044529

    Abstract Cloud storage is widely used by large companies to store vast amounts of data and files, offering flexibility, financial savings, and security. However, information shoplifting poses significant threats, potentially leading to poor performance and privacy breaches. Blockchain-based cognitive computing can help protect and maintain information security and privacy in cloud platforms, ensuring businesses can focus on business development. To ensure data security in cloud platforms, this research proposed a blockchain-based Hybridized Data Driven Cognitive Computing (HD2C) model. However, the proposed HD2C framework addresses breaches of the privacy information of mixed participants of the Internet of Things (IoT) in the cloud.… More >

  • Open Access

    REVIEW

    Multi-Robot Privacy-Preserving Algorithms Based on Federated Learning: A Review

    Jiansheng Peng1,2,*, Jinsong Guo1, Fengbo Bao1, Chengjun Yang2, Yong Xu2, Yong Qin2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2971-2994, 2023, DOI:10.32604/cmc.2023.041897

    Abstract The robotics industry has seen rapid development in recent years due to the Corona Virus Disease 2019. With the development of sensors and smart devices, factories and enterprises have accumulated a large amount of data in their daily production, which creates extremely favorable conditions for robots to perform machine learning. However, in recent years, people’s awareness of data privacy has been increasing, leading to the inability to circulate data between different enterprises, resulting in the emergence of data silos. The emergence of federated learning provides a feasible solution to this problem, and the combination of federated learning and multi-robot systems… More >

  • Open Access

    ARTICLE

    Privacy Enhanced Mobile User Authentication Method Using Motion Sensors

    Chunlin Xiong1,2, Zhengqiu Weng3,4,*, Jia Liu1, Liang Gu2, Fayez Alqahtani5, Amr Gafar6, Pradip Kumar Sharma7

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 3013-3032, 2024, DOI:10.32604/cmes.2023.031088

    Abstract With the development of hardware devices and the upgrading of smartphones, a large number of users save privacy-related information in mobile devices, mainly smartphones, which puts forward higher demands on the protection of mobile users’ privacy information. At present, mobile user authentication methods based on human-computer interaction have been extensively studied due to their advantages of high precision and non-perception, but there are still shortcomings such as low data collection efficiency, untrustworthy participating nodes, and lack of practicability. To this end, this paper proposes a privacy-enhanced mobile user authentication method with motion sensors, which mainly includes: (1) Construct a smart… More >

  • Open Access

    ARTICLE

    Real-Time Prediction Algorithm for Intelligent Edge Networks with Federated Learning-Based Modeling

    Seungwoo Kang1, Seyha Ros1, Inseok Song1, Prohim Tam1, Sa Math2, Seokhoon Kim1,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1967-1983, 2023, DOI:10.32604/cmc.2023.045020

    Abstract Intelligent healthcare networks represent a significant component in digital applications, where the requirements hold within quality-of-service (QoS) reliability and safeguarding privacy. This paper addresses these requirements through the integration of enabler paradigms, including federated learning (FL), cloud/edge computing, software-defined/virtualized networking infrastructure, and converged prediction algorithms. The study focuses on achieving reliability and efficiency in real-time prediction models, which depend on the interaction flows and network topology. In response to these challenges, we introduce a modified version of federated logistic regression (FLR) that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks. To establish… More >

Displaying 1-10 on page 1 of 46. Per Page