Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Federated Learning Model for Auto Insurance Rate Setting Based on Tweedie Distribution

    Tao Yin1, Changgen Peng2,*, Weijie Tan3, Dequan Xu4, Hanlin Tang5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 827-843, 2024, DOI:10.32604/cmes.2023.029039

    Abstract In the assessment of car insurance claims, the claim rate for car insurance presents a highly skewed probability distribution, which is typically modeled using Tweedie distribution. The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset, when the data is provided by multiple parties, training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge. To address this issue, this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos. The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection… More >

  • Open Access

    ARTICLE

    Multi-Domain Malicious Behavior Knowledge Base Framework for Multi-Type DDoS Behavior Detection

    Ouyang Liu, Kun Li*, Ziwei Yin, Deyun Gao, Huachun Zhou

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2955-2977, 2023, DOI:10.32604/iasc.2023.039995

    Abstract Due to the many types of distributed denial-of-service attacks (DDoS) attacks and the large amount of data generated, it becomes a challenge to manage and apply the malicious behavior knowledge generated by DDoS attacks. We propose a malicious behavior knowledge base framework for DDoS attacks, which completes the construction and application of a multi-domain malicious behavior knowledge base. First, we collected malicious behavior traffic generated by five mainstream DDoS attacks. At the same time, we completed the knowledge collection mechanism through data pre-processing and dataset design. Then, we designed a malicious behavior category graph and malicious behavior structure graph for… More >

  • Open Access

    ARTICLE

    Privacy Preserved Brain Disorder Diagnosis Using Federated Learning

    Ali Altalbe1,2,*, Abdul Rehman Javed3

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2187-2200, 2023, DOI:10.32604/csse.2023.040624

    Abstract Federated learning has recently attracted significant attention as a cutting-edge technology that enables Artificial Intelligence (AI) algorithms to utilize global learning across the data of numerous individuals while safeguarding user data privacy. Recent advanced healthcare technologies have enabled the early diagnosis of various cognitive ailments like Parkinson’s. Adequate user data is frequently used to train machine learning models for healthcare systems to track the health status of patients. The healthcare industry faces two significant challenges: security and privacy issues and the personalization of cloud-trained AI models. This paper proposes a Deep Neural Network (DNN) based approach embedded in a federated… More >

  • Open Access

    ARTICLE

    CD-FL: Cataract Images Based Disease Detection Using Federated Learning

    Arfat Ahmad Khan1, Shtwai Alsubai2, Chitapong Wechtaisong3,*, Ahmad Almadhor4, Natalia Kryvinska5,*, Abdullah Al Hejaili6, Uzma Ghulam Mohammad7

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1733-1750, 2023, DOI:10.32604/csse.2023.039296

    Abstract A cataract is one of the most significant eye problems worldwide that does not immediately impair vision and progressively worsens over time. Automatic cataract prediction based on various imaging technologies has been addressed recently, such as smartphone apps used for remote health monitoring and eye treatment. In recent years, advances in diagnosis, prediction, and clinical decision support using Artificial Intelligence (AI) in medicine and ophthalmology have been exponential. Due to privacy concerns, a lack of data makes applying artificial intelligence models in the medical field challenging. To address this issue, a federated learning framework named CD-FL based on a VGG16… More >

  • Open Access

    ARTICLE

    Chest Radiographs Based Pneumothorax Detection Using Federated Learning

    Ahmad Almadhor1,*, Arfat Ahmad Khan2, Chitapong Wechtaisong3,*, Iqra Yousaf4, Natalia Kryvinska5, Usman Tariq6, Haithem Ben Chikha1

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1775-1791, 2023, DOI:10.32604/csse.2023.039007

    Abstract Pneumothorax is a thoracic condition that occurs when a person’s lungs collapse, causing air to enter the pleural cavity, the area close to the lungs and chest wall. The most persistent disease, as well as one that necessitates particular patient care and the privacy of their health records. The radiologists find it challenging to diagnose pneumothorax due to the variations in images. Deep learning-based techniques are commonly employed to solve image categorization and segmentation problems. However, it is challenging to employ it in the medical field due to privacy issues and a lack of data. To address this issue, a… More >

  • Open Access

    ARTICLE

    Evidence-Based Federated Learning for Set-Valued Classification of Industrial IoT DDos Attack Traffic

    Jiale Cheng1, Zilong Jin1,2,*

    Journal on Internet of Things, Vol.4, No.3, pp. 183-195, 2022, DOI:10.32604/jiot.2022.042054

    Abstract A novel Federated learning classifier is proposed using the Dempster-Shafer (DS) theory for the set-valued classification of industrial IoT Distributed Denial of Service (DDoS) attack traffic. The proposed classifier, referred to as the evidence-based federated learning classifier, employs convolution and pooling layers to extract high-dimensional features of Distributed Denial of Service (DDoS) traffic from the local data of private industrial clients. The characteristics obtained from the various participants are transformed into mass functions and amalgamated utilizing Dempster’s rule within the DS layer, situated on the federated server. Lastly, the set value classification task of attack mode is executed in the… More >

  • Open Access

    ARTICLE

    An Intrusion Detection Scheme Based on Federated Learning and Self-Attention Fusion Convolutional Neural Network for IoT

    Jie Deng1, Ran Guo2, Zilong Jin1,3,*

    Journal on Internet of Things, Vol.4, No.3, pp. 141-153, 2022, DOI:10.32604/jiot.2022.038914

    Abstract Traditional based deep learning intrusion detection methods face problems such as insufficient cloud storage, data privacy leaks, high communication costs, unsatisfactory detection rates, and false positive rate. To address existing issues in intrusion detection, this paper presents a novel approach called CS-FL, which combines Federated Learning and a Self-Attention Fusion Convolutional Neural Network. Federated Learning is a new distributed computing model that enables individual training of client data without uploading local data to a central server. at the same time, local training results are uploaded and integrated across all participating clients to produce a global model. The sharing model reduces… More >

  • Open Access

    ARTICLE

    A Double-Compensation-Based Federated Learning Scheme for Data Privacy Protection in a Social IoT Scenario

    Junqi Guo1,2, Qingyun Xiong1,*, Minghui Yang1, Ziyun Zhao1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 827-848, 2023, DOI:10.32604/cmc.2023.036450

    Abstract Nowadays, smart wearable devices are used widely in the Social Internet of Things (IoT), which record human physiological data in real time. To protect the data privacy of smart devices, researchers pay more attention to federated learning. Although the data leakage problem is somewhat solved, a new challenge has emerged. Asynchronous federated learning shortens the convergence time, while it has time delay and data heterogeneity problems. Both of the two problems harm the accuracy. To overcome these issues, we propose an asynchronous federated learning scheme based on double compensation to solve the problem of time delay and data heterogeneity problems.… More >

  • Open Access

    ARTICLE

    MSEs Credit Risk Assessment Model Based on Federated Learning and Feature Selection

    Zhanyang Xu1, Jianchun Cheng1,*, Luofei Cheng1, Xiaolong Xu1,2, Muhammad Bilal3

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5573-5595, 2023, DOI:10.32604/cmc.2023.037287

    Abstract Federated learning has been used extensively in business innovation scenarios in various industries. This research adopts the federated learning approach for the first time to address the issue of bank-enterprise information asymmetry in the credit assessment scenario. First, this research designs a credit risk assessment model based on federated learning and feature selection for micro and small enterprises (MSEs) using multi-dimensional enterprise data and multi-perspective enterprise information. The proposed model includes four main processes: namely encrypted entity alignment, hybrid feature selection, secure multi-party computation, and global model updating. Secondly, a two-step feature selection algorithm based on wrapper and filter is… More >

  • Open Access

    ARTICLE

    A Client Selection Method Based on Loss Function Optimization for Federated Learning

    Yan Zeng1,2,3, Siyuan Teng1, Tian Xiang4,*, Jilin Zhang1,2,3, Yuankai Mu5, Yongjian Ren1,2,3,*, Jian Wan1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 1047-1064, 2023, DOI:10.32604/cmes.2023.027226

    Abstract Federated learning is a distributed machine learning method that can solve the increasingly serious problem of data islands and user data privacy, as it allows training data to be kept locally and not shared with other users. It trains a global model by aggregating locally-computed models of clients rather than their raw data. However, the divergence of local models caused by data heterogeneity of different clients may lead to slow convergence of the global model. For this problem, we focus on the client selection with federated learning, which can affect the convergence performance of the global model with the selected… More > Graphic Abstract

    A Client Selection Method Based on Loss Function Optimization for Federated Learning

Displaying 1-10 on page 1 of 31. Per Page