Open Access iconOpen Access

ARTICLE

Multi-Agent Reinforcement Learning for Moving Target Defense Temporal Decision-Making Approach Based on Stackelberg-FlipIt Games

Rongbo Sun, Jinlong Fei*, Yuefei Zhu, Zhongyu Guo

Key Laboratory of Cyberspace Security, Ministry of Education, Zhengzhou, 450001, China

* Corresponding Author: Jinlong Fei. Email: email

Computers, Materials & Continua 2025, 84(2), 3765-3786. https://doi.org/10.32604/cmc.2025.064849

Abstract

Moving Target Defense (MTD) necessitates scientifically effective decision-making methodologies for defensive technology implementation. While most MTD decision studies focus on accurately identifying optimal strategies, the issue of optimal defense timing remains underexplored. Current default approaches—periodic or overly frequent MTD triggers—lead to suboptimal trade-offs among system security, performance, and cost. The timing of MTD strategy activation critically impacts both defensive efficacy and operational overhead, yet existing frameworks inadequately address this temporal dimension. To bridge this gap, this paper proposes a Stackelberg-FlipIt game model that formalizes asymmetric cyber conflicts as alternating control over attack surfaces, thereby capturing the dynamic security state evolution of MTD systems. We introduce a belief factor to quantify information asymmetry during adversarial interactions, enhancing the precision of MTD trigger timing. Leveraging this game-theoretic foundation, we employ Multi-Agent Reinforcement Learning (MARL) to derive adaptive temporal strategies, optimized via a novel four-dimensional reward function that holistically balances security, performance, cost, and timing. Experimental validation using IP address mutation against scanning attacks demonstrates stable strategy convergence and accelerated defense response, significantly improving cybersecurity affordability and effectiveness.

Keywords

Cyber security; moving target defense; multi-agent reinforcement learning; security metrics; game theory

Cite This Article

APA Style
Sun, R., Fei, J., Zhu, Y., Guo, Z. (2025). Multi-Agent Reinforcement Learning for Moving Target Defense Temporal Decision-Making Approach Based on Stackelberg-FlipIt Games. Computers, Materials & Continua, 84(2), 3765–3786. https://doi.org/10.32604/cmc.2025.064849
Vancouver Style
Sun R, Fei J, Zhu Y, Guo Z. Multi-Agent Reinforcement Learning for Moving Target Defense Temporal Decision-Making Approach Based on Stackelberg-FlipIt Games. Comput Mater Contin. 2025;84(2):3765–3786. https://doi.org/10.32604/cmc.2025.064849
IEEE Style
R. Sun, J. Fei, Y. Zhu, and Z. Guo, “Multi-Agent Reinforcement Learning for Moving Target Defense Temporal Decision-Making Approach Based on Stackelberg-FlipIt Games,” Comput. Mater. Contin., vol. 84, no. 2, pp. 3765–3786, 2025. https://doi.org/10.32604/cmc.2025.064849



cc Copyright © 2025 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 312

    View

  • 129

    Download

  • 0

    Like

Share Link