Open Access iconOpen Access

ARTICLE

crossmark

Computing of LQR Technique for Nonlinear System Using Local Approximation

Aamir Shahzad1, Ali Altalbe2,*

1 Mechanical Engineering Department, The University of Lahore, Lahore, Pakistan
2 Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 80258, Saudi Arabia

* Corresponding Author: Ali Altalbe. Email: email

Computer Systems Science and Engineering 2023, 46(1), 853-871. https://doi.org/10.32604/csse.2023.035575

Abstract

The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator (LQR) technique using local approximation. The LQR is an excellent method for developing a controller for nonlinear systems. It provides optimal feedback to make the closed-loop system robust and stable, rejecting external disturbances. Model-based optimal controller for a nonlinear system such as a rotatory inverted pendulum has not been designed and implemented using Newton-Euler, Lagrange method, and local approximation. Therefore, implementing LQR to an underactuated nonlinear system was vital to design a stable controller. A mathematical model has been developed for the controller design by utilizing the Newton-Euler, Lagrange method. The nonlinear model has been linearized around an equilibrium point. Linear and nonlinear models have been compared to find the range in which linear and nonlinear models’ behaviour is similar. MATLAB LQR function and system dynamics have been used to estimate the controller parameters. For the performance evaluation of the designed controller, Simulink has been used. Linear and nonlinear models have been simulated along with the designed controller. Simulations have been performed for the designed controller over the linear and nonlinear system under different conditions through varying system variables. The results show that the system is stable and robust enough to act against external disturbances. The controller maintains the rotary inverted pendulum in an upright position and rejects disruptions like falling under gravitational force or any external disturbance by adjusting the rotation of the horizontal link in both linear and nonlinear environments in a specific range. The controller has been practically designed and implemented. It is vivid from the results that the controller is robust enough to reject the disturbances in milliseconds and keeps the pendulum arm deflection angle to zero degrees.

Keywords


Cite This Article

APA Style
Shahzad, A., Altalbe, A. (2023). Computing of LQR technique for nonlinear system using local approximation. Computer Systems Science and Engineering, 46(1), 853-871. https://doi.org/10.32604/csse.2023.035575
Vancouver Style
Shahzad A, Altalbe A. Computing of LQR technique for nonlinear system using local approximation. Comput Syst Sci Eng. 2023;46(1):853-871 https://doi.org/10.32604/csse.2023.035575
IEEE Style
A. Shahzad and A. Altalbe, "Computing of LQR Technique for Nonlinear System Using Local Approximation," Comput. Syst. Sci. Eng., vol. 46, no. 1, pp. 853-871. 2023. https://doi.org/10.32604/csse.2023.035575



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 518

    View

  • 280

    Download

  • 0

    Like

Share Link