Open Access iconOpen Access

ARTICLE

Numerical Analysis of a Microjet-Based Method for Active Flow Control in Convergent-Divergent Nozzles with a Sudden Expansion

Abdul Aabid1,*, Sher Afghan Khan2, Muneer Baig1

1 Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh, 11586, Saudi Arabia
2 Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, 50728, Malaysia

* Corresponding Author: Abdul Aabid. Email: email

(This article belongs to this Special Issue: Materials, Energy, and Fluid Dynamics)

Fluid Dynamics & Materials Processing 2022, 18(6), 1877-1900. https://doi.org/10.32604/fdmp.2022.021860

Abstract

A method based on microjets is implemented to control the flow properties in a convergent-divergent nozzle undergoing a sudden expansion. Three different variants of this active control technique are explored numerically by means of a finite-volume method for compressible fluid flow: with the first one, the control is implemented at the base, with the second at the wall, while the third one may be regarded as a combination of these. When jets are over-expanded, the control is not very effective. However, when a favourable pressure gradient is established in the nozzle, the control becomes effective, leading to an increase in the base pressure.

Keywords


Cite This Article

Aabid, A., Khan, S. A., Baig, M. (2022). Numerical Analysis of a Microjet-Based Method for Active Flow Control in Convergent-Divergent Nozzles with a Sudden Expansion Duct. FDMP-Fluid Dynamics & Materials Processing, 18(6), 1877–1900.



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1447

    View

  • 542

    Download

  • 0

    Like

Share Link