Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

Rough Set Based Rule Approximation and Application on Uncertain Datasets

L. Ezhilarasi1,*, A.P. Shanthi2, V. Uma Maheswari1

1 Department of Information Science and Technology, College of Engineering, Guindy, Anna University, Chennai, Tamil Nadu,600025, India
2 Department of Computer Science and Engineering, College of Engineering, Guindy, Anna University, Chennai, Tamil Nadu, 600025, India.

* Corresponding Author: L.Ezhilarasi, email

Intelligent Automation & Soft Computing 2020, 26(3), 465-478. https://doi.org/10.32604/iasc.2020.013923

Abstract

Development of new Artificial Intelligence related data analy sis methodologies w ith rev olutionary information technology has made a radical change in prediction, forecasting, and decision making for real-w orld data. The challenge arises w hen the real w orld dataset consisting of v oluminous data is uncertain. The rough set is a mathematical formalism that has emerged significantly for uncertain datasets. It represents the know ledge of the datasets as decision rules. It does not need any metadata. The rules are used to predict or classify unseen ex amples. The objectiv e of this research is to dev elop a rough set based classification sy stem that predicts and classifies unseen ex amples by learning from the minimal subset of decision rules ex tracted from uncertain datasets using rule approx imation. This paper proposes a nov el rule approx imation classifier, Weighted-Attribute Significance Rule Approx imation (WASRA) that uses a subset of the decision rules generated by any rule induction algorithm, to compute the concept w eights of the condition attributes. The concept w eights and the significance of condition attributes are used to design a nov el classifier. This classifier is implemented and initially tested on a few benchmarked datasets of the UCI repository . The classifier is subsequently tested on a real-time dataset and compared to other standard classifiers. The ex perimental results illustrate that the proposed WASRA performs w ell and show s an improv ement in the prediction accuracy compared to other classifiers. This classifier can be applied to any dataset w hich has uncertainty .

Keywords


Cite This Article

APA Style
Ezhilarasi, L., Shanthi, A., Maheswari, V.U. (2020). Rough set based rule approximation and application on uncertain datasets. Intelligent Automation & Soft Computing, 26(3), 465-478. https://doi.org/10.32604/iasc.2020.013923
Vancouver Style
Ezhilarasi L, Shanthi A, Maheswari VU. Rough set based rule approximation and application on uncertain datasets. Intell Automat Soft Comput . 2020;26(3):465-478 https://doi.org/10.32604/iasc.2020.013923
IEEE Style
L. Ezhilarasi, A. Shanthi, and V.U. Maheswari "Rough Set Based Rule Approximation and Application on Uncertain Datasets," Intell. Automat. Soft Comput. , vol. 26, no. 3, pp. 465-478. 2020. https://doi.org/10.32604/iasc.2020.013923



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2185

    View

  • 1337

    Download

  • 0

    Like

Related articles

Share Link