Open Access iconOpen Access

ARTICLE

crossmark

Pancreas Segmentation Optimization Based on Coarse-to-Fine Scheme

Xu Yao1,2, Chengjian Qiu1, Yuqing Song1, Zhe Liu1,*

1 School of Computer Science and Telecommunication, Jiangsu University, Zhenjiang, 212013, China
2 School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang, 212013, China

* Corresponding Author: Zhe Liu. Email: email

(This article belongs to the Special Issue: Cognitive Granular Computing Methods for Big Data Analysis)

Intelligent Automation & Soft Computing 2023, 37(3), 2583-2594. https://doi.org/10.32604/iasc.2023.037205

Abstract

As the pancreas only occupies a small region in the whole abdominal computed tomography (CT) scans and has high variability in shape, location and size, deep neural networks in automatic pancreas segmentation task can be easily confused by the complex and variable background. To alleviate these issues, this paper proposes a novel pancreas segmentation optimization based on the coarse-to-fine structure, in which the coarse stage is responsible for increasing the proportion of the target region in the input image through the minimum bounding box, and the fine is for improving the accuracy of pancreas segmentation by enhancing the data diversity and by introducing a new segmentation model, and reducing the running time by adding a total weights constraint. This optimization is evaluated on the public pancreas segmentation dataset and achieves 87.87% average Dice-Sørensen coefficient (DSC) accuracy, which is 0.94% higher than 86.93%, result of the state-of-the-art pancreas segmentation methods. Moreover, this method has strong generalization that it can be easily applied to other coarse-to-fine or one step organ segmentation tasks.

Keywords


Cite This Article

APA Style
Yao, X., Qiu, C., Song, Y., Liu, Z. (2023). Pancreas segmentation optimization based on coarse-to-fine scheme. Intelligent Automation & Soft Computing, 37(3), 2583-2594. https://doi.org/10.32604/iasc.2023.037205
Vancouver Style
Yao X, Qiu C, Song Y, Liu Z. Pancreas segmentation optimization based on coarse-to-fine scheme. Intell Automat Soft Comput . 2023;37(3):2583-2594 https://doi.org/10.32604/iasc.2023.037205
IEEE Style
X. Yao, C. Qiu, Y. Song, and Z. Liu "Pancreas Segmentation Optimization Based on Coarse-to-Fine Scheme," Intell. Automat. Soft Comput. , vol. 37, no. 3, pp. 2583-2594. 2023. https://doi.org/10.32604/iasc.2023.037205



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 718

    View

  • 241

    Download

  • 0

    Like

Share Link