Open Access iconOpen Access

ARTICLE

crossmark

Enhanced Classification of Brain Tumor Types Using Multi-Head Self-Attention and ResNeXt CNN

Muhammad Naeem*, Abdul Majid

Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, 45650, Islamabad, Pakistan

* Corresponding Author: Muhammad Naeem. Email: email

Journal on Artificial Intelligence 2025, 7, 115-141. https://doi.org/10.32604/jai.2025.062446

Abstract

Brain tumor identification is a challenging task in neuro-oncology. The brain’s complex anatomy makes it a crucial part of the central nervous system. Accurate tumor classification is crucial for clinical diagnosis and treatment planning. This research presents a significant advancement in the multi-classification of brain tumors. This paper proposed a novel architecture that integrates Enhanced ResNeXt 101_32×8d, a Convolutional Neural Network (CNN) with a multi-head self-attention (MHSA) mechanism. This combination harnesses the strengths of the feature extraction, feature representation by CNN, and long-range dependencies by MHSA. Magnetic Resonance Imaging (MRI) datasets were employed to check the effectiveness of the proposed architecture. The first dataset (DS-1, Msoud) included four brain tumor classes, and the second dataset (DS-2) contained seven brain tumor classes. This methodology effectively distinguished various tumor classes, achieving high accuracies of 99.75% on DS-1 and 98.80% on DS-2. These impressive results indicate the superior performance and adaptability of our model for multiclass brain tumor classification. Evaluation metrics such as accuracy, precision, recall, F1 score, and ROC (receiver operating characteristic) curve were utilized to comprehensively evaluate model validity. The performance results showed that the model is well-suited for clinical applications, with reduced errors and high accuracy.

Keywords

Brain tumor classification; multi-head self-attention module (MHSA); ResNeXt 101_32×8d; deep learning; medical imaging

Cite This Article

APA Style
Naeem, M., Majid, A. (2025). Enhanced Classification of Brain Tumor Types Using Multi-Head Self-Attention and ResNeXt CNN. Journal on Artificial Intelligence, 7(1), 115–141. https://doi.org/10.32604/jai.2025.062446
Vancouver Style
Naeem M, Majid A. Enhanced Classification of Brain Tumor Types Using Multi-Head Self-Attention and ResNeXt CNN. J Artif Intell. 2025;7(1):115–141. https://doi.org/10.32604/jai.2025.062446
IEEE Style
M. Naeem and A. Majid, “Enhanced Classification of Brain Tumor Types Using Multi-Head Self-Attention and ResNeXt CNN,” J. Artif. Intell., vol. 7, no. 1, pp. 115–141, 2025. https://doi.org/10.32604/jai.2025.062446



cc Copyright © 2025 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 984

    View

  • 642

    Download

  • 0

    Like

Share Link