Open Access
ARTICLE
Suitability of Blends from Virgin and Reprocessed Polylactide: Performance and Energy Valorization Kinetics
Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
Departament d’Enginyeria Química, Escola Tècnica Superior d’Enginyeria, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
*Corresponding author:
Journal of Renewable Materials 2018, 6(4), 370-382. https://doi.org/10.7569/JRM.2017.634170
Abstract
A blending strategy of virgin and reprocessed polylactide may be postulated as an alternative to reduce the material cost at industrial level, and as a valorization route to plastic waste management of production scraps. The performance of blends prepared from virgin polylactide and polylactide mechanically reprocessed up to two cycles (PLA-V/R) was assessed in terms of thermo-oxidative stability, morphology, viscoelasticity and thermal kinetics for energetic valorization. PLA-V/R blends showed appropriate thermo-oxidative stability. The amorphous nature of polylactide was preserved after blending. The viscoelastic properties showed an increment of the mechanical blend effectiveness, which suggested the feasibility of using PLA-V/R blends under similar mechanical conditions to those of virgin PLA goods. Finally, it was shown that the energetic valorization of PLA-V/R blends would result in a more feasible process, due to the lower required activation energy, thus highlighting the advantages of the energetic demand for the process. In conclusion, PLA-V/R blends showed similar processability, service performance and valorization routes as virgin PLA and therefore could be relevant in the sustainable circular industry of bioplastics.Keywords
