MD Hamid Borkot Tulla1,*, MD Moniur Rahman Ratan2, Rashid MD Mamunur3, Abdullah Hil Safi Sohan4, MD Matiur Rahman5
Journal of Cyber Security, Vol.7, pp. 675-691, 2025, DOI:10.32604/jcs.2025.074737
- 24 December 2025
Abstract Phishing is considered one of the most widespread cybercrimes due to the fact that it combines both technical and human vulnerabilities with the intention of stealing sensitive information. Traditional blacklist and heuristic-based defenses fail to detect such emerging attack patterns; hence, intelligent and transparent detection systems are needed. This paper proposes an explainable machine learning framework that integrates predictive performance with regulatory accountability. Four models were trained and tested on a balanced dataset of 10,000 URLs, comprising 5000 phishing and 5000 legitimate samples, each characterized by 48 lexical and content-based features: Decision Tree, XGBoost, Logistic… More >