Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,360)
  • Open Access

    ARTICLE

    Numerical Evaluation of Variation in ‘Characteristic Distance’ due to Fracture Specimen Thickness and Temperature

    Sanjeev Saxena1, Raghvendra Singh2, Geeta Agnihotri2

    CMC-Computers, Materials & Continua, Vol.36, No.3, pp. 257-270, 2013, DOI:10.3970/cmc.2013.036.257

    Abstract The present numerical study is an attempt to understand the dependency of characteristic distance on the fracture specimen thickness and temperature. The presented work will be useful to establish the characteristic distance prediction methodology using three dimensional FEM model. Based on the methods proposed for the numerical prediction of characteristic distance, it comes out that it depends on fracture specimen thickness and finally it converges after a specified thickness of fracture specimen. In Armco iron material, characteristic distance varies in temperature ranges where dynamic strain ageing phenomenon is observed, initially decrease and then increases again. More >

  • Open Access

    ARTICLE

    Effect of the Strain Rate and Microstructure on Damage Growth in Aluminum

    R. R. Valisetty1, A.M. Dongare2, A.M. Rajendran3, R. R. Namburu1

    CMC-Computers, Materials & Continua, Vol.36, No.3, pp. 231-255, 2013, DOI:10.3970/cmc.2013.036.231

    Abstract Materials used in soldier protective structures, such as armor, vehicles and civil infrastructures, are being improved for performance in extreme dynamic environments. Nanocrystalline metals show significant promise in the design of these structures with superior strengths attributed to the dislocation-based and grain-boundary-based processes as compared to their polycrystalline counterparts. An optimization of these materials, however, requires a fundamental understanding of damage evolution at the atomic level. Accordingly, atomistic molecular dynamics simulations are performed using an embedded-atom method (EAM) potential on three nano-crystalline aluminum atom systems, one a Voronoi-based nano-crystalline system with an average grain size of 10 nm, and the… More >

  • Open Access

    ARTICLE

    Thermal-Mechanical and Thermodynamic Properties of Graphene Sheets using a Modified Nosé-Hoover Thermostat

    Ching-Feng Yu1, Wen-Hwa Chen1,2, Kun-Ling Chen1, Hsien-Chie Cheng2,3

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 203-229, 2013, DOI:10.3970/cmc.2013.036.203

    Abstract The investigation assesses the thermal-mechanical and thermodynamic properties of various graphene sheets using a modified Nosé-Hoover (NH) thermostat method incorporated with molecular dynamics (MD) simulation. The investigation begins with an exploration of their thermal-mechanical properties at atmospheric pressure, including Young’s modulus, shear modulus, Poisson’s ratio, specific heats and linear and volumetric coefficients of thermal expansion (CTE). Two definitions of the line change ratio (ΔL/L) are utilized to determine the linear CTE of graphene sheets, and the calculations are compared with each other and data in the literature. To estimate the volumetric CTE values, the Connolly surface method is applied to… More >

  • Open Access

    ARTICLE

    Heat Conduction Analysis of Nonhomogeneous Functionally Graded Three-Layer Media

    Chien-Ching Ma1,2, Yi-Tzu Chen2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 177-201, 2013, DOI:10.3970/cmc.2013.036.177

    Abstract Functionally graded material (FGM) is a particulate composite with continuously changing its thermal and mechanical properties in order to raise the bonding strength in the discrete composite made from different phases of material constituents. Furthermore, FGM is a potent tool to create an intermediate layer in metal–ceramic composites to avoid the properties discontinuities and reduce, thereby, the residual stresses. For the nonhomogeneous problem, the mathematical derivation is much complicated than the homogeneous case since the material properties vary with coordinate. To analyze the problem, the Fourier transform is applied and the general solution in transform domain is obtained. The inverse… More >

  • Open Access

    ARTICLE

    Thermal-Cyclic Fatigue Life Analysis and Reliability Estimation of a FCCSP based on Probabilistic Design Concept

    Yao Hsu1, Chih-Yen Su2, Wen-Fang Wu3,4

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 155-176, 2013, DOI:10.3970/cmc.2013.036.155

    Abstract To study the fatigue reliability of a flip-chip chip scale package (FCCSP) subject to thermal cyclic loading, a Monte Carlo simulation-based parametric study is carried out in the present study. A refined procedure as compared with the recently released Probabilistic Design System (PDS) of ANSYS is proposed and employed in particular. The thermal-cyclic fatigue life of the package is discussed in detail since it is related directly to the reliability of the package. In consideration of the analytical procedure as well as real manufacturing processes, a few geometric dimensions and material properties of the package are assumed random. The empirical… More >

  • Open Access

    ARTICLE

    Correspondence Relations for Fracture Parameters of Interface Corners in Anisotropic Viscoelastic Materials

    Chyanbin Hwu1, Tai-Liang Kuo2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 135-153, 2013, DOI:10.3970/cmc.2013.036.135

    Abstract The problems of the interface corners between two dissimilar anisotropic viscoelastic materials are studied in this paper. Through the use of the well-known correspondence principle between linear elasticity and linear viscoelasticity, fracture parameters in the Laplace domain can be obtained from the path-independent H-integral for the corresponding problems of anisotropic linear elastic materials. Further application of the correspondence relations for fracture parameters proposed in our recent study then leads us the solutions of fracture parameters in the time domain. To show the applicability and accuracy of the proposed method, several different kinds of numerical examples are presented such as a… More >

  • Open Access

    ARTICLE

    Estimation of the Mechanical Property of CNT Ropes Using Atomistic-Continuum Mechanics and the Equivalent Methods

    C.J. Huang1, T.Y. Hung1, K.N. Chiang2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 99-133, 2013, DOI:10.3970/cmc.2013.036.099

    Abstract The development in the field of nanotechnology has prompted numerous researchers to develop various simulation methods for determining the material properties of nanoscale structures. However, these methods are restricted by the speed limitation of the central processing unit (CPU), which cannot estimate larger-scale nanoscale models within an acceptable time. Thus, decreasing the CPU processing time and retaining the estimation accuracy of physical properties of nanoscale structures have become critical issues. Accordingly, this study aims to decrease the CPU processing time and complexity of large nanoscale models by utilizing, atomistic-continuum mechanics (ACM) to build an equivalent model of carbon nanotubes (CNTs).… More >

  • Open Access

    ARTICLE

    Multivariate Adaptive Regression Splines Model to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams

    P. Yuvaraj1, A. Ramachandra Murthy2, Nagesh R. Iyer3, Pijush Samui4, S.K. Sekar5

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 73-97, 2013, DOI:10.3970/cmc.2013.036.073

    Abstract This paper presents Multivariate Adaptive Regression Splines (MARS) model to predict the fracture characteristics of high strength and ultra high strength concrete beams. Fracture characteristics include fracture energy (GF), critical stress intensity factor (KIC) and critical crack tip opening displacement (CTODc). This paper also presents the details of development of MARS model to predict failure load (Pmax) of high strength concrete (HSC) and ultra high strength concrete (UHSC) beam specimens. Characterization of mix and testing of beams of high strength and ultra strength concrete have been described. Methodologies for evaluation of fracture energy, critical stress intensity factor and critical crack… More >

  • Open Access

    ARTICLE

    The Cell Method: an Enriched Description of Physics Starting from the Algebraic Formulation

    E. Ferretti1

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 49-72, 2013, DOI:10.3970/cmc.2013.036.049

    Abstract In several recent papers studying the Cell Method (CM), which is a numerical method based on a truly algebraic formulation, it has been shown that numerical modeling in physics can be achieved even without starting from differential equations, by using a direct algebraic formulation. In the present paper, our focus will be above all on highlighting some of the theoretical features of this algebraic formulation to show that the CM is not simply a new numerical method among many others, but a powerful numerical instrument that can be used to avoid spurious solutions in computational physics. More >

  • Open Access

    ARTICLE

    Forced Vibration of the Pre-Stressed and Imperfectly Bonded Bi-Layered Plate Strip Resting on a Rigid Foundation

    S.D. Akbarov1,2, E. Hazar3, M. Eröz3

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 23-48, 2013, DOI:10.3970/cmc.2013.036.023

    Abstract Within the scope of the piecewise homogeneous body model with utilizing of the three dimensional linearized theory of elastic waves in initially stressed bodies the influence of the shear-spring type imperfection of the contact conditions between the layers of the pre-stressed bi-layered plate strip resting on the rigid foundation, on the frequency response of this plate strip is investigated. The corresponding mathematical problem is solved numerically by employing FEM and numerical results illustrating the influence of the parameter characterizing the degree of the mentioned imperfectness, on the frequency response of the normal stress acting on the interface planes between the… More >

Displaying 22111-22120 on page 2212 of 22360. Per Page