Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,827)
  • Open Access

    ARTICLE

    Predicting Grain Orientations of 316 Stainless Steel Using Convolutional Neural Networks

    Dhia K. Suker, Ahmed R. Abdo*, Khalid Abdulkhaliq M. Alharbi

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 929-947, 2024, DOI:10.32604/iasc.2024.056341 - 31 October 2024

    Abstract This paper presents a deep learning Convolutional Neural Network (CNN) for predicting grain orientations from electron backscatter diffraction (EBSD) patterns. The proposed model consists of multiple neural network layers and has been trained on a dataset of EBSD patterns obtained from stainless steel 316 (SS316). Grain orientation changes when considering the effects of temperature and strain rate on material deformation. The deep learning CNN predicts material orientation using the EBSD method to address this challenge. The accuracy of this approach is evaluated by comparing the predicted crystal orientation with the actual orientation under different conditions, More >

  • Open Access

    ARTICLE

    Arabic Dialect Identification in Social Media: A Comparative Study of Deep Learning and Transformer Approaches

    Enas Yahya Alqulaity1, Wael M.S. Yafooz1,*, Abdullah Alourani2, Ayman Jaradat3

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 907-928, 2024, DOI:10.32604/iasc.2024.055470 - 31 October 2024

    Abstract Arabic dialect identification is essential in Natural Language Processing (NLP) and forms a critical component of applications such as machine translation, sentiment analysis, and cross-language text generation. The difficulties in differentiating between Arabic dialects have garnered more attention in the last 10 years, particularly in social media. These difficulties result from the overlapping vocabulary of the dialects, the fluidity of online language use, and the difficulties in telling apart dialects that are closely related. Managing dialects with limited resources and adjusting to the ever-changing linguistic trends on social media platforms present additional challenges. A strong… More >

  • Open Access

    ARTICLE

    Recognition of Bird Species of Yunnan Based on Improved ResNet18

    Wei Yang1,2,*, Ivy Kim D. Machica1

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 889-905, 2024, DOI:10.32604/iasc.2024.055133 - 31 October 2024

    Abstract Birds play a crucial role in maintaining ecological balance, making bird recognition technology a hot research topic. Traditional recognition methods have not achieved high accuracy in bird identification. This paper proposes an improved ResNet18 model to enhance the recognition rate of local bird species in Yunnan. First, a dataset containing five species of local birds in Yunnan was established: C. amherstiae, T. caboti, Syrmaticus humiae, Polyplectron bicalcaratum, and Pucrasia macrolopha. The improved ResNet18 model was then used to identify these species. This method replaces traditional convolution with depth wise separable convolution and introduces an SE (Squeeze and Excitation) module to More >

  • Open Access

    ARTICLE

    Robot Vision over CosGANs to Enhance Performance with Source-Free Domain Adaptation Using Advanced Loss Function

    Laviza Falak Naz1, Rohail Qamar2,*, Raheela Asif1, Muhammad Imran2, Saad Ahmed3

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 855-887, 2024, DOI:10.32604/iasc.2024.055074 - 31 October 2024

    Abstract Domain shift is when the data used in training does not match the ones it will be applied to later on under similar conditions. Domain shift will reduce accuracy in results. To prevent this, domain adaptation is done, which adapts the pre-trained model to the target domain. In real scenarios, the availability of labels for target data is rare thus resulting in unsupervised domain adaptation. Herein, we propose an innovative approach where source-free domain adaptation models and Generative Adversarial Networks (GANs) are integrated to improve the performance of computer vision or robotic vision-based systems in… More >

  • Open Access

    ARTICLE

    A New Framework for Scholarship Predictor Using a Machine Learning Approach

    Bushra Kanwal1, Rana Saud Shoukat2, Saif Ur Rehman2,*, Mahwish Kundi3, Tahani AlSaedi4, Abdulrahman Alahmadi4

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 829-854, 2024, DOI:10.32604/iasc.2024.054645 - 31 October 2024

    Abstract Education is the base of the survival and growth of any state, but due to resource scarcity, students, particularly at the university level, are forced into a difficult situation. Scholarships are the most significant financial aid mechanisms developed to overcome such obstacles and assist the students in continuing with their higher studies. In this study, the convoluted situation of scholarship eligibility criteria, including parental income, responsibilities, and academic achievements, is addressed. In an attempt to maximize the scholarship selection process, numerous machine learning algorithms, including Support Vector Machines, Neural Networks, K-Nearest Neighbors, and the C4.5… More >

  • Open Access

    ARTICLE

    Fusion of Type-2 Neutrosophic Similarity Measure in Signatures Verification Systems: A New Forensic Document Analysis Paradigm

    Shahlaa Mashhadani1,*, Wisal Hashim Abdulsalam1, Oday Ali Hassen2, Saad M. Darwish3

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 805-828, 2024, DOI:10.32604/iasc.2024.054611 - 31 October 2024

    Abstract Signature verification involves vague situations in which a signature could resemble many reference samples or might differ because of handwriting variances. By presenting the features and similarity score of signatures from the matching algorithm as fuzzy sets and capturing the degrees of membership, non-membership, and indeterminacy, a neutrosophic engine can significantly contribute to signature verification by addressing the inherent uncertainties and ambiguities present in signatures. But type-1 neutrosophic logic gives these membership functions fixed values, which could not adequately capture the various degrees of uncertainty in the characteristics of signatures. Type-1 neutrosophic representation is also… More >

  • Open Access

    ARTICLE

    Privacy-Preserving and Lightweight V2I and V2V Authentication Protocol Using Blockchain Technology

    Muhammad Imran Ghafoor1, Awad Bin Naeem2,*, Biswaranjan Senapati3, Md. Sakiul Islam Sudman4, Satyabrata Pradhan5, Debabrata Das6, Friban Almeida6, Hesham A. Sakr7

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 783-803, 2024, DOI:10.32604/iasc.2024.050819 - 31 October 2024

    Abstract The confidentiality of pseudonymous authentication and secure data transmission is essential for the protection of information and mitigating risks posed by compromised vehicles. The Internet of Vehicles has meaningful applications, enabling connected and autonomous vehicles to interact with infrastructure, sensors, computing nodes, humans, and fellow vehicles. Vehicular hoc networks play an essential role in enhancing driving efficiency and safety by reducing traffic congestion while adhering to cryptographic security standards. This paper introduces a privacy-preserving Vehicle-to-Infrastructure authentication, utilizing encryption and the Moore curve. The proposed approach enables a vehicle to deduce the planned itinerary of Roadside More >

  • Open Access

    ARTICLE

    Automated Angle Detection for Industrial Production Lines Using Combined Image Processing Techniques

    Pawat Chunhachatrachai1,*, Chyi-Yeu Lin1,2

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 599-618, 2024, DOI:10.32604/iasc.2024.055385 - 06 September 2024

    Abstract Angle detection is a crucial aspect of industrial automation, ensuring precise alignment and orientation of components in manufacturing processes. Despite the widespread application of computer vision in industrial settings, angle detection remains an underexplored domain, with limited integration into production lines. This paper addresses the need for automated angle detection in industrial environments by presenting a methodology that eliminates training time and higher computation cost on Graphics Processing Unit (GPU) from machine learning in computer vision (e.g., Convolutional Neural Networks (CNN)). Our approach leverages advanced image processing techniques and a strategic combination of algorithms, including More >

  • Open Access

    ARTICLE

    Data-Oriented Operating System for Big Data and Cloud

    Selwyn Darryl Kessler, Kok-Why Ng*, Su-Cheng Haw*

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 633-647, 2024, DOI:10.32604/iasc.2024.054154 - 06 September 2024

    Abstract Operating System (OS) is a critical piece of software that manages a computer’s hardware and resources, acting as the intermediary between the computer and the user. The existing OS is not designed for Big Data and Cloud Computing, resulting in data processing and management inefficiency. This paper proposes a simplified and improved kernel on an x86 system designed for Big Data and Cloud Computing purposes. The proposed algorithm utilizes the performance benefits from the improved Input/Output (I/O) performance. The performance engineering runs the data-oriented design on traditional data management to improve data processing speed by… More >

  • Open Access

    ARTICLE

    Chase, Pounce, and Escape Optimization Algorithm

    Adel Sabry Eesa*

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 697-723, 2024, DOI:10.32604/iasc.2024.053192 - 06 September 2024

    Abstract While many metaheuristic optimization algorithms strive to address optimization challenges, they often grapple with the delicate balance between exploration and exploitation, leading to issues such as premature convergence, sensitivity to parameter settings, and difficulty in maintaining population diversity. In response to these challenges, this study introduces the Chase, Pounce, and Escape (CPE) algorithm, drawing inspiration from predator-prey dynamics. Unlike traditional optimization approaches, the CPE algorithm divides the population into two groups, each independently exploring the search space to efficiently navigate complex problem domains and avoid local optima. By incorporating a unique search mechanism that integrates More >

Displaying 21-30 on page 3 of 1827. Per Page