Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (93)
  • Open Access

    ARTICLE

    Deep Learning Empowered Diagnosis of Diabetic Retinopathy

    Mustafa Youldash1, Atta Rahman2,*, Manar Alsayed1, Abrar Sebiany1, Joury Alzayat1, Noor Aljishi1, Ghaida Alshammari1, Mona Alqahtani1

    Intelligent Automation & Soft Computing, DOI:10.32604/iasc.2025.058509

    Abstract Diabetic retinopathy (DR) is a complication of diabetes that can lead to reduced vision or even blindness if left untreated. Therefore, early and accurate detection of this disease is crucial for diabetic patients to prevent vision loss. This study aims to develop a deep-learning approach for the early and precise diagnosis of DR, as manual detection can be time-consuming, costly, and prone to human error. The classification task is divided into two groups for binary classification: patients with DR (diagnoses 1–4) and those without DR (diagnosis 0). For multi-class classification, the categories are no DR,… More >

  • Open Access

    ARTICLE

    A Blockchain-Based Access Management System for Enhanced Patient Privacy and Secure Telehealth and Telemedicine Data

    Ayoub Ghani1,*, Ahmed Zinedine1, Mohammed El Mohajir2

    Intelligent Automation & Soft Computing, DOI:10.32604/iasc.2025.060143

    Abstract The Internet of Things (IoT) advances allow healthcare providers to distantly gather and immediately analyze patient health data for diagnostic purposes via connected health devices. In a COVID-19-like pandemic, connected devices can mitigate virus spread and make essential information, such as respiratory patterns, available to healthcare professionals. However, these devices generate vast amounts of data, rendering them susceptible to privacy breaches, and data leaks. Blockchain technology is a robust solution to address these issues in telemedicine systems. This paper proposes a blockchain-based access management solution to enhance patient privacy and secure telehealth and telemedicine data.… More >

  • Open Access

    ARTICLE

    Internet of Things Software Engineering Model Validation Using Knowledge-Based Semantic Learning

    Mahmood Alsaadi, Mohammed E. Seno*, Mohammed I. Khalaf

    Intelligent Automation & Soft Computing, DOI:10.32604/iasc.2024.060390

    Abstract The agility of Internet of Things (IoT) software engineering is benchmarked based on its systematic insights for wide application support infrastructure developments. Such developments are focused on reducing the interfacing complexity with heterogeneous devices through applications. To handle the interfacing complexity problem, this article introduces a Semantic Interfacing Obscuration Model (SIOM) for IoT software-engineered platforms. The interfacing obscuration between heterogeneous devices and application interfaces from the testing to real-time validations is accounted for in this model. Based on the level of obscuration between the infrastructure hardware to the end-user software, the modifications through device replacement, More >

  • Open Access

    ARTICLE

    Innovative Lightweight Encryption Schemes Leveraging Chaotic Systems for Secure Data Transmission

    Haider H. Al-Mahmood1,*, Saad N. Alsaad2

    Intelligent Automation & Soft Computing, DOI:10.32604/iasc.2024.059691

    Abstract In secure communications, lightweight encryption has become crucial, particularly for resource-constrained applications such as embedded devices, wireless sensor networks, and the Internet of Things (IoT). As these systems proliferate, cryptographic approaches that provide robust security while minimizing computing overhead, energy consumption, and memory usage are becoming increasingly essential. This study examines lightweight encryption techniques utilizing chaotic maps to ensure secure data transmission. Two algorithms are proposed, both employing the Logistic map; the first approach utilizes two logistic chaotic maps, while the second algorithm employs a single logistic chaotic map. Algorithm 1, including a two-stage mechanism… More >

  • Open Access

    ARTICLE

    Enhancing Network Security: Leveraging Machine Learning for Integrated Protection and Intrusion Detection

    Nada Mohammed Murad1, Adnan Yousif Dawod2, Saadaldeen Rashid Ahmed3,4,*, Ravi Sekhar5, Pritesh Shah5

    Intelligent Automation & Soft Computing, DOI:10.32604/iasc.2024.058624

    Abstract This study introduces an innovative hybrid approach that integrates deep learning with blockchain technology to improve cybersecurity, focusing on network intrusion detection systems (NIDS). The main goal is to overcome the shortcomings of conventional intrusion detection techniques by developing a more flexible and robust security architecture. We use seven unique machine learning models to improve detection skills, emphasizing data quality, traceability, and transparency, facilitated by a blockchain layer that safeguards against data modification and ensures auditability. Our technique employs the Synthetic Minority Oversampling Technique (SMOTE) to equilibrate the dataset, therefore mitigating prevalent class imbalance difficulties… More >

  • Open Access

    ARTICLE

    Overfitting in Machine Learning: A Comparative Analysis of Decision Trees and Random Forests

    Erblin Halabaku, Eliot Bytyçi*

    Intelligent Automation & Soft Computing, DOI:10.32604/iasc.2024.059429

    Abstract Machine learning has emerged as a pivotal tool in deciphering and managing this excess of information in an era of abundant data. This paper presents a comprehensive analysis of machine learning algorithms, focusing on the structure and efficacy of random forests in mitigating overfitting—a prevalent issue in decision tree models. It also introduces a novel approach to enhancing decision tree performance through an optimized pruning method called Adaptive Cross-Validated Alpha CCP (ACV-CCP). This method refines traditional cost complexity pruning by streamlining the selection of the alpha parameter, leveraging cross-validation within the pruning process to achieve More >

  • Open Access

    ARTICLE

    Enhanced Diagnostic Precision: Deep Learning for Tumors Lesion Classification in Dermatology

    Rafid Sagban1,2,*, Haydar Abdulameer Marhoon3,4, Saadaldeen Rashid Ahmed5,6,*

    Intelligent Automation & Soft Computing, DOI:10.32604/iasc.2024.058416

    Abstract Skin cancer is a highly frequent kind of cancer. Early identification of a phenomenon significantly improves outcomes and mitigates the risk of fatalities. Melanoma, basal, and squamous cell carcinomas are well-recognized cutaneous malignancies. Malignant We can differentiate Melanoma from non-pigmented carcinomas like basal and squamous cell carcinoma. The research on developing automated skin cancer detection systems has primarily focused on pigmented malignant type melanoma. The limited availability of datasets with a wide range of lesion categories has hindered in-depth exploration of non-pigmented malignant skin lesions. The present study investigates the feasibility of automated methods for… More >

  • Open Access

    ARTICLE

    A Deep Learning-Based Automated Approach of Schizophrenia Detection from Facial Micro-Expressions

    Anum Saher1, Ghulam Gilanie1,*, Sana Cheema1, Akkasha Latif1, Syeda Naila Batool1, Hafeez Ullah2

    Intelligent Automation & Soft Computing, DOI:10.32604/iasc.2024.057047

    Abstract Schizophrenia is a severe mental illness responsible for many of the world’s disabilities. It significantly impacts human society; thus, rapid, and efficient identification is required. This research aims to diagnose schizophrenia directly from a high-resolution camera, which can capture the subtle micro facial expressions that are difficult to spot with the help of the naked eye. In a clinical study by a team of experts at Bahawal Victoria Hospital (BVH), Bahawalpur, Pakistan, there were 300 people with schizophrenia and 299 healthy subjects. Videos of these participants have been captured and converted into their frames using… More >

  • Open Access

    ARTICLE

    Evaluating the Effectiveness of Graph Convolutional Network for Detection of Healthcare Polypharmacy Side Effects

    Omer Nabeel Dara1,*, Tareq Abed Mohammed2, Abdullahi Abdu Ibrahim1

    Intelligent Automation & Soft Computing, DOI:10.32604/iasc.2024.058736

    Abstract Healthcare polypharmacy is routinely used to treat numerous conditions; however, it often leads to unanticipated bad consequences owing to complicated medication interactions. This paper provides a graph convolutional network (GCN)-based model for identifying adverse effects in polypharmacy by integrating pharmaceutical data from electronic health records (EHR). The GCN framework analyzes the complicated links between drugs to forecast the possibility of harmful drug interactions. Experimental assessments reveal that the proposed GCN model surpasses existing machine learning approaches, reaching an accuracy (ACC) of 91%, an area under the receiver operating characteristic curve (AUC) of 0.88, and an More >

  • Open Access

    ARTICLE

    Secure Digital Image Watermarking Technique Based on ResNet-50 Architecture

    Satya Narayan Das1,2,*, Mrutyunjaya Panda2,*

    Intelligent Automation & Soft Computing, DOI:10.32604/iasc.2024.057013

    Abstract In today’s world of massive data and interconnected networks, it’s crucial to burgeon a secure and efficient digital watermarking method to protect the copyrights of digital content. Existing research primarily focuses on deep learning-based approaches to improve the quality of watermarked images, but they have some flaws. To overcome this, the deep learning digital image watermarking model with highly secure algorithms is proposed to secure the digital image. Recently, quantum logistic maps, which combine the concept of quantum computing with traditional techniques, have been considered a niche and promising area of research that has attracted… More >

Displaying 1-10 on page 1 of 93. Per Page