Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,131)
  • Open Access

    ARTICLE

    Three-Dimensional Trajectory Planning for Robotic Manipulators Using Model Predictive Control and Point Cloud Optimization

    Zeinel Momynkulov1,2, Azhar Tursynova1,2,*, Olzhas Olzhayev1,2, Akhanseri Ikramov1,2, Sayat Ibrayev1, Batyrkhan Omarov1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, DOI:10.32604/cmes.2025.068615

    Abstract Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position, velocity, and acceleration must be satisfied. Conventional geometric planners emphasize path smoothness but often ignore dynamic feasibility, motivating control-aware trajectory generation. This study presents a novel model predictive control (MPC) framework for three-dimensional trajectory planning of robotic manipulators that integrates second-order dynamic modeling and multi-objective parameter optimization. Unlike conventional interpolation techniques such as cubic splines, B-splines, and linear interpolation, which neglect physical constraints and system dynamics, the proposed method generates dynamically feasible trajectories by directly optimizing over acceleration inputs while… More >

  • Open Access

    ARTICLE

    Dombi Power Aggregation-Based Decision Framework for Smart City Initiative Prioritization under t-Arbicular Fuzzy Environment

    Jawad Ali1,*, Ioan-Lucian Popa2,3

    CMES-Computer Modeling in Engineering & Sciences, DOI:10.32604/cmes.2025.064604

    Abstract With the rapid growth of urbanization, smart city development has become a strategic priority worldwide, requiring complex and uncertain decision-making processes. In this context, advanced decision-support tools are essential to evaluate and prioritize competing initiatives effectively. To support effective prioritization of smart city initiatives under uncertainty, this study introduces a robust decision-making framework based on the t-arbicular fuzzy (t-AF) set—a recent extension of the t-spherical fuzzy set that incorporates an additional parameter, the radius , to enhance the representation of uncertainty. Dombi-based operational laws are formulated within this context, leading to the development of four… More >

  • Open Access

    ARTICLE

    A Hybrid Machine Learning and Fractional-Order Dynamical Framework for Multi-Scale Prediction of Breast Cancer Progression

    David Amilo1,*, Khadijeh Sadri1, Evren Hincal1,2, Mohamed Hafez3,4

    CMES-Computer Modeling in Engineering & Sciences, DOI:10.32604/cmes.2025.070298

    Abstract Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction. We present a hybrid framework that integrates machine learning (ML) and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales. On the Wisconsin Diagnostic Breast Cancer dataset, seven ML algorithms were evaluated, with deep neural networks (DNNs) achieving the highest accuracy (97.72%). Key morphological features (area, radius, texture, and concavity) were identified as top malignancy predictors, aligning with clinical intuition. Beyond static classification, we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression. The model revealed clinically interpretable patterns: More >

  • Open Access

    ARTICLE

    Predictive and Global Effect of Active Smoker in Asthma Dynamics with Caputo Fractional Derivative

    Muhammad Farman1,2,3,*, Noreen Asghar4, Muhammad Umer Saleem4, Kottakkaran Sooppy Nisar5,6, Kamyar Hosseini1,2,7, Mohamed Hafez8,9

    CMES-Computer Modeling in Engineering & Sciences, DOI:10.32604/cmes.2025.069541

    Abstract Smoking is harmful to the lungs and has numerous effects on our bodies. This leads to decreased lung function, which increases the lungs’ susceptibility to asthma triggers. In this paper, we develop a new fractional-order model and investigate the impact of smoking on the progression of asthma by using the Caputo operator to analyze different factors. Using the Banach contraction principle, the existence and uniqueness of solutions are established, and the positivity and boundedness of the model are proved. The model further incorporates different stages of smoking to account for incubation periods and other latent… More >

  • Open Access

    ARTICLE

    Systematic Analysis of Latent Fingerprint Patterns through Fractionally Optimized CNN Model for Interpretable Multi-Output Identification

    Mubeen Sabir1, Zeshan Aslam Khan2,*, Muhammad Waqar2, Khizer Mehmood1, Muhammad Junaid Ali Asif Raja3, Naveed Ishtiaq Chaudhary4, Khalid Mehmood Cheema5, Muhammad Asif Zahoor Raja4, Muhammad Farhan Khan6, Syed Sohail Ahmed7

    CMES-Computer Modeling in Engineering & Sciences, DOI:10.32604/cmes.2025.068131

    Abstract Fingerprint classification is a biometric method for crime prevention. For the successful completion of various tasks, such as official attendance, banking transactions, and membership requirements, fingerprint classification methods require improvement in terms of accuracy, speed, and the interpretability of non-linear demographic features. Researchers have introduced several CNN-based fingerprint classification models with improved accuracy, but these models often lack effective feature extraction mechanisms and complex multineural architectures. In addition, existing literature primarily focuses on gender classification rather than accurately, efficiently, and confidently classifying hands and fingers through the interpretability of prominent features. This research seeks to… More >

  • Open Access

    ARTICLE

    A Filter-Based Feature Selection Framework to Detect Phishing URLs Using Stacking Ensemble Machine Learning

    Nimra Bari1, Tahir Saleem2, Munam Shah3, Abdulmohsen Algarni4, Asma Patel5,*, Insaf Ullah6,*

    CMES-Computer Modeling in Engineering & Sciences, DOI:10.32604/cmes.2025.070311

    Abstract Today, phishing is an online attack designed to obtain sensitive information such as credit card and bank account numbers, passwords, and usernames. We can find several anti-phishing solutions, such as heuristic detection, virtual similarity detection, black and white lists, and machine learning (ML). However, phishing attempts remain a problem, and establishing an effective anti-phishing strategy is a work in progress. Furthermore, while most anti-phishing solutions achieve the highest levels of accuracy on a given dataset, their methods suffer from an increased number of false positives. These methods are ineffective against zero-hour attacks. Phishing sites with… More >

  • Open Access

    ARTICLE

    A Multimodal Learning Framework to Reduce Misclassification in GI Tract Disease Diagnosis

    Sadia Fatima1, Fadl Dahan2,*, Jamal Hussain Shah1, Refan Almohamedh2, Mohammed Aloqaily2, Samia Riaz1

    CMES-Computer Modeling in Engineering & Sciences, DOI:10.32604/cmes.2025.070272

    Abstract The human gastrointestinal (GI) tract is influenced by numerous disorders. If not detected in the early stages, they may result in severe consequences such as organ failure or the development of cancer, and in extreme cases, become life-threatening. Endoscopy is a specialised imaging technique used to examine the GI tract. However, physicians might neglect certain irregular morphologies during the examination due to continuous monitoring of the video recording. Recent advancements in artificial intelligence have led to the development of high-performance AI-based systems, which are optimal for computer-assisted diagnosis. Due to numerous limitations in endoscopic image… More >

  • Open Access

    ARTICLE

    Cavitation Performance Analysis of Tip Clearance in a Bulb-Type Hydro Turbine

    Feng Zhou1,2, Qifei Li1,*, Lu Xin1, Shiang Zhang3, Yang Liu1, Ming Guo1

    CMES-Computer Modeling in Engineering & Sciences, DOI:10.32604/cmes.2025.069639

    Abstract Bulb-type hydro turbines are commonly used in small- to medium-scale hydropower stations due to their compact design and adaptability to low-head conditions. However, long-term operation often results in wear at the runner rim, increasing tip clearance and triggering leakage flow and cavitation. These effects reduce hydraulic efficiency and accelerate blade surface erosion, posing serious risks to unit safety and operational stability. This study investigates the influence of tip clearance on cavitation performance in a 24 MW prototype bulb turbine. A three-dimensional numerical model is developed to simulate various operating conditions with different tip clearance values… More >

  • Open Access

    ARTICLE

    Harnessing TLBO-Enhanced Cheetah Optimizer for Optimal Feature Selection in Cancer Data

    Bibhuprasad Sahu1, Amrutanshu Panigrahi2, Abhilash Pati2, Ashis Kumar Pati3, Janmejaya Mishra4, Naim Ahmad5,*, Salman Arafath Mohammed6, Saurav Mallik7,8,*

    CMES-Computer Modeling in Engineering & Sciences, DOI:10.32604/cmes.2025.069618

    Abstract Metaheuristic optimization methods are iterative search processes that aim to efficiently solve complex optimization problems. These basically find the solution space very efficiently, often without utilizing the gradient information, and are inspired by the bio-inspired and socially motivated heuristics. Metaheuristic optimization algorithms are increasingly applied to complex feature selection problems in high-dimensional medical datasets. Among these, Teaching-Learning-Based optimization (TLBO) has proven effective for continuous design tasks by balancing exploration and exploitation phases. However, its binary version (BTLBO) suffers from limited exploitation ability, often converging prematurely or getting trapped in local optima, particularly when applied to… More >

  • Open Access

    ARTICLE

    An Efficient GPU Solver for Maximizing Fundamental Eigenfrequency in Large-Scale Three-Dimensional Topology Optimization

    Tianyuan Qi1, Junpeng Zhao1,2,*, Chunjie Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, DOI:10.32604/cmes.2025.070769

    Abstract A major bottleneck in large-scale eigenfrequency topology optimization is the repeated solution of the generalized eigenvalue problem. This work presents an efficient graphics processing unit (GPU) solver for three-dimensional (3D) topology optimization that maximizes the fundamental eigenfrequency. The Successive Iteration of Analysis and Design (SIAD) framework is employed to avoid solving a full eigenproblem at every iteration. The sequential approximation of the eigenpairs is solved by the GPU-accelerated multigrid-preconditioned conjugate gradient (MGPCG) method to efficiently improve the eigenvectors along with the topological evolution. The cluster-mean approach is adopted to address the non-differentiability issue caused by… More > Graphic Abstract

    An Efficient GPU Solver for Maximizing Fundamental Eigenfrequency in Large-Scale Three-Dimensional Topology Optimization

Displaying 161-170 on page 17 of 1131. Per Page