Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,760)
  • Open Access

    ARTICLE

    An Improved WCSPH Method to Simulate the Non-Newtonian Power Law Fluid Flow Induced by Motion of a Square Cylinder

    R. Shamsoddini, N. Aminizadeh1, M. Sefid

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.3, pp. 209-230, 2015, DOI:10.3970/cmes.2015.105.209

    Abstract In this study, an improved weakly compressible Smoothed Particle Hydrodynamics method is introduced and applied for investigation of the non- Newtonian power-law fluid flow which is induced by motion of a square cylinder. The method is based on a predictor-corrector scheme and pressure velocity coupling to overcome the non-physical fluctuations of WCSPH. The numerical method is also supported by the corrective tensors and shifting algorithm. The results are validated against the well known test cases and benchmark data. The square motion is tested in various Reynolds numbers for various power law indices. The results show that the drag coefficient increases… More >

  • Open Access

    ARTICLE

    DRBEM Solution of MHD Flow with Magnetic Induction and Heat Transfer

    B. Pekmen1,2, M. Tezer-Sezgin2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.3, pp. 183-207, 2015, DOI:10.3970/cmes.2015.105.183

    Abstract This study proposes the dual reciprocity boundary element (DRBEM) solution for full magnetohydrodynamics (MHD) equations in a lid-driven square cavity. MHD equations are coupled with the heat transfer equation by means of the Boussinesq approximation. Induced magnetic field is also taken into consideration. The governing equations in terms of stream function, temperature, induced magnetic field components, and vorticity are solved employing DRBEM in space together with the implicit backward Euler formula for the time derivatives. The use of DRBEM with linear boundary elements which is a boundary discretization method enables one to obtain small sized linear systems. This makes the… More >

  • Open Access

    ARTICLE

    A Semi-analytical Method for Vibrational and Buckling Analysis of Functionally Graded Nanobeams Considering the Physical Neutral Axis Position

    Farzad Ebrahimi1,2, Erfan Salari1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.2, pp. 151-181, 2015, DOI:10.3970/cmes.2015.105.151

    Abstract In this paper, a semi-analytical method is presented for free vibration and buckling analysis of functionally graded (FG) size-dependent nanobeams based on the physical neutral axis position. It is the first time that a semi-analytical differential transform method (DTM) solution is developed for the FG nanobeams vibration and buckling analysis. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form. The physical neutral axis position for mentioned FG nanobeams is determined. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are… More >

  • Open Access

    ARTICLE

    Estimation of Isotropic Hyperelasticity Constitutive Models to Approximate the Atomistic Simulation Data for Aluminium and Tungsten Monocrystals

    Marcin Maździarz1, Marcin Gajewski2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.2, pp. 123-150, 2015, DOI:10.3970/cmes.2015.105.123

    Abstract In this paper, the choice and parametrisation of finite deformation polyconvex isotropic hyperelastic models to describe the behaviour of a class of defect-free monocrystalline metal materials at the molecular level is examined. The article discusses some physical, mathematical and numerical demands which in our opinion should be fulfilled by elasticity models to be useful. A set of molecular numerical tests for aluminium and tungsten providing data for the fitting of a hyperelastic model was performed, and an algorithm for parametrisation is discussed. The proposed models with optimised parameters are superior to those used in non-linear mechanics of crystals. More >

  • Open Access

    ARTICLE

    A Meshless LBIE/LRBF Method for Solving the Nonlinear Fisher Equation: Application to Bone Healing

    K. N. Grivas1, M. G. Vavva1, E. J. Sellountos2, D. I. Fotiadis3, D. Polyzos1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.2, pp. 87-122, 2015, DOI:10.3970/cmes.2015.105.087

    Abstract A simple Local Boundary Integral Equation (LBIE) method for solving the Fisher nonlinear transient diffusion equation in two dimensions (2D) is reported. The method utilizes, for its meshless implementation, randomly distributed nodal points in the interior domain and nodal points corresponding to a Boundary Element Method (BEM) mesh, at the global boundary. The interpolation of the interior and boundary potentials is accomplished using a Local Radial Basis Functions (LRBF) scheme. At the nodes of global boundary the potentials and their fluxes are treated as independent variables. On the local boundaries, potential fluxes are avoided by using the Laplacian companion solution.… More >

  • Open Access

    ARTICLE

    Analysis and Numerical Simulation of Hydrofracture Crack Propagation in Coal-Rock Bed

    Yiyu Lu1, Chenpeng Song1,2, Yunzhong Jia1, Binwei Xia1, Zhaolong Ge1, Jiren Tang1, Qian Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.1, pp. 69-86, 2015, DOI:10.3970/cmes.2015.105.069

    Abstract In underground coal mines, hydrofracture can cause the increase of breathability in the fractured coal bed. When the hydrofracture crack propagates to the interface between the coal bed and the roof-floor stratum, the crack may enter roof-floor lithology, thus posing a limit on the scope of breathability increase and making it difficult to support the roof and floor board for subsequent coal mining. In this work, a two-dimensional model of coal rock bed that contains hydrofracture crack was constructed. Then an investigation that combines the fracture mechanics and the system of flow and solid in rock failure process analysis (RFPA2D-Flow)… More >

  • Open Access

    ARTICLE

    Optimal Adaptive Genetic Algorithm Based Hybrid Signcryption Algorithm for Information Security

    R. Sujatha1, M. Ramakrishnan2, N. Duraipandian3, B. Ramakrishnan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.1, pp. 47-68, 2015, DOI:10.3970/cmes.2015.105.047

    Abstract The functions of digital signature and public key encryption are simultaneously fulfilled by signcryption, which is a cryptographic primitive. To securely communicate very large messages, the cryptographic primitive called signcryption efficiently implements the same and while most of the public key based systems are suitable for small messages, hybrid encryption (KEM-DEM) provides a competent and practical way. In this paper, we develop a hybrid signcryption technique. The hybrid signcryption is based on the KEM and DEM technique. The KEM algorithm utilizes the KDF technique to encapsulate the symmetric key. The DEM algorithm utilizes the Adaptive Genetic Algorithm based Elliptic curve… More >

  • Open Access

    ARTICLE

    A 3-D Visco-Hyperelastic Constitutive Model for Rubber with Damage for Finite Element Simulation

    Ala Tabiei1, Suraush Khambati2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.1, pp. 25-45, 2015, DOI:10.3970/cmes.2015.105.025

    Abstract A constitutive model to describe the behavior of rubber from low to high strain rates is presented. For loading, the primary hyperelastic behavior is characterized by the six parameter Ogden’s strain-energy potential of the third order. The rate-dependence is captured by the nonlinear second order BKZ model using another five parameters, having two relaxation times. For unloading, a single parameter model has been presented to define Hysteresis or continuous damage, while Ogden’s two term model has been used to capture Mullin’s effect or discontinuous damage. Lastly, the Feng-Hallquist failure surface dictates the ultimate failure for element deletion. The proposed model… More >

  • Open Access

    ARTICLE

    The Use of High-Performance Fatigue Mechanics and the Extended Kalman / Particle Filters, for Diagnostics and Prognostics of Aircraft Structures

    Hai-Kun Wang1,2, Robert Haynes3, Hong-Zhong Huang1, Leiting Dong2,4, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.1, pp. 1-24, 2015, DOI:10.3970/cmes.2015.105.001

    Abstract In this paper, we propose an approach for diagnostics and prognostics of damaged aircraft structures, by combing high-performance fatigue mechanics with filtering theories. Fast & accurate deterministic analyses of fatigue crack propagations are carried out, by using the Finite Element Alternating Method (FEAM) for computing SIFs, and by using the newly developed Moving Least Squares (MLS) law for computing fatigue crack growth rates. Such algorithms for simulating fatigue crack propagations are embedded in the computer program Safe- Flaw, which is called upon as a subroutine within the probabilistic framework of filter theories. Both the extended Kalman as well as particle… More >

  • Open Access

    ARTICLE

    A New Minimax Probabilistic Approach and Its Application in Recognition the Purity of Hybrid Seeds

    Liming Yang1, Yongping Gao2, Qun Sun3

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.6, pp. 493-506, 2015, DOI:10.3970/cmes.2015.104.493

    Abstract Minimax probability machine (MPM) has been recently proposed and shown its advantage in pattern recognition. In this paper, we present a new minimax probabilistic approach (MPA),which can provide an explicit lower bound on prediction accuracy. Applying the Chebyshev-Cantelli inequality, the MPA is posed as a second order cone program formulation and solved effectively. Following that, this method is exploited directly to recognize the purity of hybrid seeds using near-infrared spectroscopic data. Experimental results in different spectral regions show that the proposed MPA is competitive with the existing minimax probability machine and support vector machine in generalization, while requires less computational… More >

Displaying 2151-2160 on page 216 of 3760. Per Page