Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,039)
  • Open Access

    ARTICLE

    Artificial Neural Network Model for Thermal Conductivity Estimation of Metal Oxide Water-Based Nanofluids

    Nikhil S. Mane1, Sheetal Kumar Dewangan2,*, Sayantan Mukherjee3, Pradnyavati Mane4, Deepak Kumar Singh1, Ravindra Singh Saluja5

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.072090 - 10 November 2025

    Abstract The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids. Researchers rely on experimental investigations to explore nanofluid properties, as it is a necessary step before their practical application. As these investigations are time and resource-consuming undertakings, an effective prediction model can significantly improve the efficiency of research operations. In this work, an Artificial Neural Network (ANN) model is developed to predict the thermal conductivity of metal oxide water-based nanofluid. For this, a comprehensive set of 691 data points was collected from the literature. This dataset is split More >

  • Open Access

    ARTICLE

    First-Principles Study on the Mechanical and Thermodynamic Properties of (NbZrHfTi)C High-Entropy Ceramics

    Yonggang Tong1,*, Kai Yang1, Pengfei Li1, Yongle Hu1, Xiubing Liang2,*, Jian Liu3, Yejun Li4, Jingzhong Fang1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.071890 - 10 November 2025

    Abstract (NbZrHfTi)C high-entropy ceramics, as an emerging class of ultra-high-temperature materials, have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional high-temperature properties. This study systematically investigates the mechanical properties of (NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory, combined with the Debye-Grüneisen model, to explore the variations in their thermophysical properties with temperature (0–2000 K) and pressure (0–30 GPa). Thermodynamically, the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in (NbZrHfTi)C. The calculated results of the elastic stiffness constant indicate that the… More >

  • Open Access

    ARTICLE

    Coupled Effects of Single-Vacancy Defect Positions on the Mechanical Properties and Electronic Structure of Aluminum Crystals

    Binchang Ma1, Xinhai Yu2, Gang Huang3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.071320 - 10 November 2025

    Abstract Vacancy defects, as fundamental disruptions in metallic lattices, play an important role in shaping the mechanical and electronic properties of aluminum crystals. However, the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood. In this study, transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys, suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation. To complement these observations, first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum. The stress response, total energy, density of states More >

  • Open Access

    ARTICLE

    A Deep Learning Framework for Heart Disease Prediction with Explainable Artificial Intelligence

    Muhammad Adil1, Nadeem Javaid1,*, Imran Ahmed2, Abrar Ahmed3, Nabil Alrajeh4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071215 - 10 November 2025

    Abstract Heart disease remains a leading cause of mortality worldwide, emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention. However, existing Deep Learning (DL) approaches often face several limitations, including inefficient feature extraction, class imbalance, suboptimal classification performance, and limited interpretability, which collectively hinder their deployment in clinical settings. To address these challenges, we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture. The preprocessing stage involves label encoding and feature scaling. To address the issue of… More >

  • Open Access

    REVIEW

    Deep Learning-Enhanced Human Sensing with Channel State Information: A Survey

    Binglei Yue, Aili Jiang, Chun Yang, Junwei Lei, Heng Liu, Yin Zhang*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.071047 - 10 November 2025

    Abstract With the growing advancement of wireless communication technologies, WiFi-based human sensing has gained increasing attention as a non-intrusive and device-free solution. Among the available signal types, Channel State Information (CSI) offers fine-grained temporal, frequency, and spatial insights into multipath propagation, making it a crucial data source for human-centric sensing. Recently, the integration of deep learning has significantly improved the robustness and automation of feature extraction from CSI in complex environments. This paper provides a comprehensive review of deep learning-enhanced human sensing based on CSI. We first outline mainstream CSI acquisition tools and their hardware specifications, More >

  • Open Access

    ARTICLE

    Artificial Intelligence (AI)-Enabled Unmanned Aerial Vehicle (UAV) Systems for Optimizing User Connectivity in Sixth-Generation (6G) Ubiquitous Networks

    Zeeshan Ali Haider1, Inam Ullah2,*, Ahmad Abu Shareha3, Rashid Nasimov4, Sufyan Ali Memon5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.071042 - 10 November 2025

    Abstract The advent of sixth-generation (6G) networks introduces unprecedented challenges in achieving seamless connectivity, ultra-low latency, and efficient resource management in highly dynamic environments. Although fifth-generation (5G) networks transformed mobile broadband and machine-type communications at massive scales, their properties of scaling, interference management, and latency remain a limitation in dense high mobility settings. To overcome these limitations, artificial intelligence (AI) and unmanned aerial vehicles (UAVs) have emerged as potential solutions to develop versatile, dynamic, and energy-efficient communication systems. The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning (CoRL) to manage an autonomous network.… More >

  • Open Access

    ARTICLE

    Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems

    Junxiang Li1,2, Zhipeng Dong2, Ben Han3, Jianqiao Chen3, Xinxin Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070816 - 10 November 2025

    Abstract Owing to their global search capabilities and gradient-free operation, metaheuristic algorithms are widely applied to a wide range of optimization problems. However, their computational demands become prohibitive when tackling high-dimensional optimization challenges. To effectively address these challenges, this study introduces cooperative metaheuristics integrating dynamic dimension reduction (DR). Building upon particle swarm optimization (PSO) and differential evolution (DE), the proposed cooperative methods C-PSO and C-DE are developed. In the proposed methods, the modified principal components analysis (PCA) is utilized to reduce the dimension of design variables, thereby decreasing computational costs. The dynamic DR strategy implements periodic… More >

  • Open Access

    ARTICLE

    SwinHCAD: A Robust Multi-Modality Segmentation Model for Brain Tumors Using Transformer and Channel-Wise Attention

    Seyong Jin1, Muhammad Fayaz2, L. Minh Dang3, Hyoung-Kyu Song3, Hyeonjoon Moon2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.070667 - 10 November 2025

    Abstract Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics. While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information, existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors. In order to address these challenges and maximize the performance of brain tumor segmentation, this research introduces a novel SwinUNETR-based model by integrating a new decoder block, the Hierarchical Channel-wise Attention Decoder (HCAD), into a powerful SwinUNETR encoder. The HCAD… More >

  • Open Access

    ARTICLE

    Conditional Generative Adversarial Network-Based Travel Route Recommendation

    Sunbin Shin1, Luong Vuong Nguyen2, Grzegorz J. Nalepa3,4, Paulo Novais5, Xuan Hau Pham6, Jason J. Jung1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-40, 2026, DOI:10.32604/cmc.2025.070613 - 10 November 2025

    Abstract Recommending personalized travel routes from sparse, implicit feedback poses a significant challenge, as conventional systems often struggle with information overload and fail to capture the complex, sequential nature of user preferences. To address this, we propose a Conditional Generative Adversarial Network (CGAN) that generates diverse and highly relevant itineraries. Our approach begins by constructing a conditional vector that encapsulates a user’s profile. This vector uniquely fuses embeddings from a Heterogeneous Information Network (HIN) to model complex user-place-route relationships, a Recurrent Neural Network (RNN) to capture sequential path dynamics, and Neural Collaborative Filtering (NCF) to incorporate… More >

  • Open Access

    ARTICLE

    An Improved Reinforcement Learning-Based 6G UAV Communication for Smart Cities

    Vi Hoai Nam1, Chu Thi Minh Hue2, Dang Van Anh1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070605 - 10 November 2025

    Abstract Unmanned Aerial Vehicles (UAVs) have become integral components in smart city infrastructures, supporting applications such as emergency response, surveillance, and data collection. However, the high mobility and dynamic topology of Flying Ad Hoc Networks (FANETs) present significant challenges for maintaining reliable, low-latency communication. Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable. To overcome these limitations, this paper proposes an improved routing protocol based on reinforcement learning. This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware. The proposed method optimizes the selection of… More >

Displaying 1-10 on page 1 of 7039. Per Page