Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,234)
  • Open Access

    ARTICLE

    A Firefly Algorithm-Optimized CNN–BiLSTM Model for Automated Detection of Bone Cancer and Marrow Cell Abnormalities

    Ishaani Priyadarshini*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072343 - 12 January 2026

    Abstract Early and accurate detection of bone cancer and marrow cell abnormalities is critical for timely intervention and improved patient outcomes. This paper proposes a novel hybrid deep learning framework that integrates a Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) architecture, optimized using the Firefly Optimization algorithm (FO). The proposed CNN-BiLSTM-FO model is tailored for structured biomedical data, capturing both local patterns and sequential dependencies in diagnostic features, while the Firefly Algorithm fine-tunes key hyperparameters to maximize predictive performance. The approach is evaluated on two benchmark biomedical datasets: one comprising diagnostic data… More >

  • Open Access

    ARTICLE

    A Novel Signature-Based Secure Intrusion Detection for Smart Transportation Systems

    Hanaa Nafea1, Awais Qasim2, Sana Abdul Sattar2, Adeel Munawar3, Muhammad Nadeem Ali4, Byung-Seo Kim4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072281 - 12 January 2026

    Abstract The increased connectivity and reliance on digital technologies have exposed smart transportation systems to various cyber threats, making intrusion detection a critical aspect of ensuring their secure operation. Traditional intrusion detection systems have limitations in terms of centralized architecture, lack of transparency, and vulnerability to single points of failure. This is where the integration of blockchain technology with signature-based intrusion detection can provide a robust and decentralized solution for securing smart transportation systems. This study tackles the issue of database manipulation attacks in smart transportation networks by proposing a signature-based intrusion detection system. The introduced More >

  • Open Access

    ARTICLE

    MDMOSA: Multi-Objective-Oriented Dwarf Mongoose Optimization for Cloud Task Scheduling

    Olanrewaju Lawrence Abraham1,2,*, Md Asri Ngadi1, Johan Bin Mohamad Sharif1, Mohd Kufaisal Mohd Sidik1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072279 - 12 January 2026

    Abstract Task scheduling in cloud computing is a multi-objective optimization problem, often involving conflicting objectives such as minimizing execution time, reducing operational cost, and maximizing resource utilization. However, traditional approaches frequently rely on single-objective optimization methods which are insufficient for capturing the complexity of such problems. To address this limitation, we introduce MDMOSA (Multi-objective Dwarf Mongoose Optimization with Simulated Annealing), a hybrid that integrates multi-objective optimization for efficient task scheduling in Infrastructure-as-a-Service (IaaS) cloud environments. MDMOSA harmonizes the exploration capabilities of the biologically inspired Dwarf Mongoose Optimization (DMO) with the exploitation strengths of Simulated Annealing (SA), More >

  • Open Access

    ARTICLE

    Surrogate-Based Dimensional Optimization of a Polymeric Roller for Ore Belt Conveyors Considering Viscoelastic Effects

    Rafiq Said Dias Jabour, Marco Antonio Luersen*, Euclides Alexandre Bernardelli

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072266 - 12 January 2026

    Abstract The roller is one of the fundamental elements of ore belt conveyor systems since it supports, guides, and directs material on the belt. This component comprises a body (the external tube) that rotates around a fixed shaft supported by easels. The external tube and shaft of rollers used in ore conveyor belts are mostly made of steel, resulting in high mass, hindering maintenance and replacement. Aiming to achieve mass reduction, we conducted a structural optimization of a roller with a polymeric external tube (hereafter referred to as a polymeric roller), seeking the optimal values for… More >

  • Open Access

    ARTICLE

    CCLNet: An End-to-End Lightweight Network for Small-Target Forest Fire Detection in UAV Imagery

    Qian Yu1,2, Gui Zhang2,*, Ying Wang1, Xin Wu2, Jiangshu Xiao2, Wenbing Kuang1, Juan Zhang2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072172 - 12 January 2026

    Abstract Detecting small forest fire targets in unmanned aerial vehicle (UAV) images is difficult, as flames typically cover only a very limited portion of the visual scene. This study proposes Context-guided Compact Lightweight Network (CCLNet), an end-to-end lightweight model designed to detect small forest fire targets while ensuring efficient inference on devices with constrained computational resources. CCLNet employs a three-stage network architecture. Its key components include three modules. C3F-Convolutional Gated Linear Unit (C3F-CGLU) performs selective local feature extraction while preserving fine-grained high-frequency flame details. Context-Guided Feature Fusion Module (CGFM) replaces plain concatenation with triplet-attention interactions to… More >

  • Open Access

    ARTICLE

    RSG-Conformer: ReLU-Based Sparse and Grouped Conformer for Audio-Visual Speech Recognition

    Yewei Xiao, Xin Du*, Wei Zeng

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072145 - 12 January 2026

    Abstract Audio-visual speech recognition (AVSR), which integrates audio and visual modalities to improve recognition performance and robustness in noisy or adverse acoustic conditions, has attracted significant research interest. However, Conformer-based architectures remain computational expensive due to the quadratic increase in the spatial and temporal complexity of their softmax-based attention mechanisms with sequence length. In addition, Conformer-based architectures may not provide sufficient flexibility for modeling local dependencies at different granularities. To mitigate these limitations, this study introduces a novel AVSR framework based on a ReLU-based Sparse and Grouped Conformer (RSG-Conformer) architecture. Specifically, we propose a Global-enhanced Sparse… More >

  • Open Access

    ARTICLE

    Deep Feature-Driven Hybrid Temporal Learning and Instance-Based Classification for DDoS Detection in Industrial Control Networks

    Haohui Su1, Xuan Zhang1,*, Lvjun Zheng1, Xiaojie Shen2, Hua Liao1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072093 - 12 January 2026

    Abstract Distributed Denial-of-Service (DDoS) attacks pose severe threats to Industrial Control Networks (ICNs), where service disruption can cause significant economic losses and operational risks. Existing signature-based methods are ineffective against novel attacks, and traditional machine learning models struggle to capture the complex temporal dependencies and dynamic traffic patterns inherent in ICN environments. To address these challenges, this study proposes a deep feature-driven hybrid framework that integrates Transformer, BiLSTM, and KNN to achieve accurate and robust DDoS detection. The Transformer component extracts global temporal dependencies from network traffic flows, while BiLSTM captures fine-grained sequential dynamics. The learned… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Personnel Detection in Substations via Federated Learning with Dynamic Noise Adaptation

    Yuewei Tian1, Yang Su2, Yujia Wang1, Lisa Guo1, Xuyang Wu3,*, Lei Cao4, Fang Ren3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072081 - 12 January 2026

    Abstract This study addresses the risk of privacy leakage during the transmission and sharing of multimodal data in smart grid substations by proposing a three-tier privacy-preserving architecture based on asynchronous federated learning. The framework integrates blockchain technology, the InterPlanetary File System (IPFS) for distributed storage, and a dynamic differential privacy mechanism to achieve collaborative security across the storage, service, and federated coordination layers. It accommodates both multimodal data classification and object detection tasks, enabling the identification and localization of key targets and abnormal behaviors in substation scenarios while ensuring privacy protection. This effectively mitigates the single-point… More >

  • Open Access

    ARTICLE

    Research on the Classification of Digital Cultural Texts Based on ASSC-TextRCNN Algorithm

    Zixuan Guo1, Houbin Wang2, Sameer Kumar1,*, Yuanfang Chen3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072064 - 12 January 2026

    Abstract With the rapid development of digital culture, a large number of cultural texts are presented in the form of digital and network. These texts have significant characteristics such as sparsity, real-time and non-standard expression, which bring serious challenges to traditional classification methods. In order to cope with the above problems, this paper proposes a new ASSC (ALBERT, SVD, Self-Attention and Cross-Entropy)-TextRCNN digital cultural text classification model. Based on the framework of TextRCNN, the Albert pre-training language model is introduced to improve the depth and accuracy of semantic embedding. Combined with the dual attention mechanism, the… More >

  • Open Access

    ARTICLE

    LP-YOLO: Enhanced Smoke and Fire Detection via Self-Attention and Feature Pyramid Integration

    Qing Long1, Bing Yi2, Haiqiao Liu3,*, Zhiling Peng1, Xiang Liu1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072058 - 12 January 2026

    Abstract Accurate detection of smoke and fire sources is critical for early fire warning and environmental monitoring. However, conventional detection approaches are highly susceptible to noise, illumination variations, and complex environmental conditions, which often reduce detection accuracy and real-time performance. To address these limitations, we propose Lightweight and Precise YOLO (LP-YOLO), a high-precision detection framework that integrates a self-attention mechanism with a feature pyramid, built upon YOLOv8. First, to overcome the restricted receptive field and parameter redundancy of conventional Convolutional Neural Networks (CNNs), we design an enhanced backbone based on Wavelet Convolutions (WTConv), which expands the… More >

Displaying 51-60 on page 6 of 7234. Per Page