Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,234)
  • Open Access

    ARTICLE

    5G Antenna Gain Enhancement Using a Novel Metasurface

    Mubashir Ashfaq1, Shahid Bashir1,*, Syed Imran Hussain Shah2, Nisar Ahmad Abbasi3, Hatem Rmili4,5, Muhammad Abbas Khan6

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3601-3611, 2022, DOI:10.32604/cmc.2022.025558 - 29 March 2022

    Abstract This article presents a Sub-6 GHz microstrip patch antenna (MPA) with enhanced gain using metamaterial (MTM) superstrate. The source MPA operates at 4.8 GHz and has a peak gain of 5.3 dBi at the resonance frequency. A window-shaped unit cell is designed and investigated through the material wave propagation technique. The unit cell shows an Epsilon Near Zero (ENZ)-Mu Very Large (MVL) behavior around 4.8 GHz. The unit cell has a fourfold geometry which makes it a polarization independent metamaterial. A double layer antenna is designed by placing a 4 × 4 MTM slab as a superstrate More >

  • Open Access

    ARTICLE

    Deep Learning and Machine Learning-Based Model for Conversational Sentiment Classification

    Sami Ullah1, Muhammad Ramzan Talib1,*, Toqir A. Rana2,3, Muhammad Kashif Hanif1, Muhammad Awais4

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2323-2339, 2022, DOI:10.32604/cmc.2022.025543 - 29 March 2022

    Abstract In the current era of the internet, people use online media for conversation, discussion, chatting, and other similar purposes. Analysis of such material where more than one person is involved has a spate challenge as compared to other text analysis tasks. There are several approaches to identify users’ emotions from the conversational text for the English language, however regional or low resource languages have been neglected. The Urdu language is one of them and despite being used by millions of users across the globe, with the best of our knowledge there exists no work on… More >

  • Open Access

    ARTICLE

    Supplier Selection Fuzzy Model in Supply Chain Management: Vietnamese Cafe Industry Case

    Chia-Nan Wang1, Hoang Tuyet Nhi Thai1,*, Nguyen Van Thanh2

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2291-2304, 2022, DOI:10.32604/cmc.2022.025477 - 29 March 2022

    Abstract Supplier selection is a vital part of the supply chain and is also a current issue that concerns businesses today as supplier quality directly affects the operations of the organization. Choosing the right supplier can help businesses increase productivity, competitiveness in the market, and profits without having to lower the quality of the products. However, choosing a supplier is not a simple matter, it requires businesses to consider many aspects about their suppliers. Therefore, the goal of this study is to propose an integrated model consisting of two models: Fuzzy Analytics Network Process (Fuzzy-ANP) model More >

  • Open Access

    ARTICLE

    Effective Classification of Synovial Sarcoma Cancer Using Structure Features and Support Vectors

    P. Arunachalam1, N. Janakiraman1, Junaid Rashid2, Jungeun Kim2,*, Sovan Samanta3, Usman Naseem4, Arun Kumar Sivaraman5, A. Balasundaram6

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2521-2543, 2022, DOI:10.32604/cmc.2022.025339 - 29 March 2022

    Abstract In this research work, we proposed a medical image analysis framework with two separate releases whether or not Synovial Sarcoma (SS) is the cell structure for cancer. Within this framework the histopathology images are decomposed into a third-level sub-band using a two-dimensional Discrete Wavelet Transform. Subsequently, the structure features (SFs) such as Principal Components Analysis (PCA), Independent Components Analysis (ICA) and Linear Discriminant Analysis (LDA) were extracted from this sub-band image representation with the distribution of wavelet coefficients. These SFs are used as inputs of the Support Vector Machine (SVM) classifier. Also, classification of PCA… More >

  • Open Access

    ARTICLE

    An Efficient Intrusion Detection Framework in Software-Defined Networking for Cybersecurity Applications

    Ghalib H. Alshammri1,2, Amani K. Samha3, Ezz El-Din Hemdan4, Mohammed Amoon1,4, Walid El-Shafai5,6,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3529-3548, 2022, DOI:10.32604/cmc.2022.025262 - 29 March 2022

    Abstract Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process. In recent times, the most complex task in Software Defined Network (SDN) is security, which is based on a centralized, programmable controller. Therefore, monitoring network traffic is significant for identifying and revealing intrusion abnormalities in the SDN environment. Consequently, this paper provides an extensive analysis and investigation of the NSL-KDD dataset using five different clustering algorithms: K-means, Farthest First, Canopy, Density-based algorithm, and Exception-maximization (EM), using the Waikato Environment for Knowledge Analysis (WEKA) software to compare… More >

  • Open Access

    ARTICLE

    Design of Energy Efficient WSN Using a Noble SMOWA Algorithm

    Avishek Banerjee1, Deepak Garg1, Victor Das2, Laxminarayan Sahoo3, Ira Nath4, Vijayakumar Varadarajan5, Ketan Kotecha6,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3585-3600, 2022, DOI:10.32604/cmc.2022.025233 - 29 March 2022

    Abstract In this paper, the establishment of efficient Wireless Sensor Network (WSN) networks has been projected to minimize the consumption of energy using a new Self-adaptive Multi-Objective Weighted Approach (SMOWA) algorithm for solving a multi-objective problem. The Different WSN nodes deployment policies have been proposed and applied in this paper to design an efficient Wireless Sensor Network to minimize energy consumption. After that, the cluster head for each cluster has been selected with the help of the duty cycle. After configuring the WSN networks, the SMOWA algorithms have been developed to obtain the minimum energy consumption… More >

  • Open Access

    ARTICLE

    Genetic Based Approach for Optimal Power and Channel Allocation to Enhance D2D Underlaied Cellular Network Capacity in 5G

    Ahmed. A. Rosas*, Mona Shokair, M. I. Dessouky

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3751-3762, 2022, DOI:10.32604/cmc.2022.025226 - 29 March 2022

    Abstract With the obvious throughput shortage in traditional cellular radio networks, Device-to-Device (D2D) communications has gained a lot of attention to improve the utilization, capacity and channel performance of next-generation networks. In this paper, we study a joint consideration of power and channel allocation based on genetic algorithm as a promising direction to expand the overall network capacity for D2D underlaied cellular networks. The genetic based algorithm targets allocating more suitable channels to D2D users and finding the optimal transmit powers for all D2D links and cellular users efficiently, aiming to maximize the overall system throughput More >

  • Open Access

    ARTICLE

    Hybrid Sine Cosine and Stochastic Fractal Search for Hemoglobin Estimation

    Marwa M. Eid1,*, Fawaz Alassery2, Abdelhameed Ibrahim3, Bandar Abdullah Aloyaydi4, Hesham Arafat Ali1,3, Shady Y. El-Mashad5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2467-2482, 2022, DOI:10.32604/cmc.2022.025220 - 29 March 2022

    Abstract The sample's hemoglobin and glucose levels can be determined by obtaining a blood sample from the human body using a needle and analyzing it. Hemoglobin (HGB) is a critical component of the human body because it transports oxygen from the lungs to the body's tissues and returns carbon dioxide from the tissues to the lungs. Calculating the HGB level is a critical step in any blood analysis job. The HGB levels often indicate whether a person is anemic or polycythemia vera. Constructing ensemble models by combining two or more base machine learning (ML) models can… More >

  • Open Access

    ARTICLE

    Modeling and Verification of Aircraft Takeoff Through Novel Quantum Nets

    Maryam Jamal1, Nazir Ahmad Zafar2, Atta-ur-Rahman3,*, Dhiaa Musleh3, Mohammed A. Gollapalli4, Sghaier Chabani4

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3331-3348, 2022, DOI:10.32604/cmc.2022.025205 - 29 March 2022

    Abstract The formal modeling and verification of aircraft takeoff is a challenge because it is a complex safety-critical operation. The task of aircraft takeoff is distributed amongst various computer-based controllers, however, with the growing malicious threats a secure communication between aircraft and controllers becomes highly important. This research serves as a starting point for integration of BB84 quantum protocol with petri nets for secure modeling and verification of takeoff procedure. The integrated model combines the BB84 quantum cryptographic protocol with powerful verification tool support offered by petri nets. To model certain important properties of BB84, a… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Based Data Offloading Technique for Secure MEC Systems

    Fadwa Alrowais1, Ahmed S. Almasoud2, Radwa Marzouk3, Fahd N. Al-Wesabi4,5, Anwer Mustafa Hilal6,*, Mohammed Rizwanullah6, Abdelwahed Motwakel6, Ishfaq Yaseen6

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2783-2795, 2022, DOI:10.32604/cmc.2022.025204 - 29 March 2022

    Abstract Mobile edge computing (MEC) provides effective cloud services and functionality at the edge device, to improve the quality of service (QoS) of end users by offloading the high computation tasks. Currently, the introduction of deep learning (DL) and hardware technologies paves a method in detecting the current traffic status, data offloading, and cyberattacks in MEC. This study introduces an artificial intelligence with metaheuristic based data offloading technique for Secure MEC (AIMDO-SMEC) systems. The proposed AIMDO-SMEC technique incorporates an effective traffic prediction module using Siamese Neural Networks (SNN) to determine the traffic status in the MEC More >

Displaying 3881-3890 on page 389 of 7234. Per Page