Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5,350)
  • Open Access

    ARTICLE

    Numerical Prediction of Dynamically Propagating and Branching Cracks Using Moving Finite Element Method

    S. Tchouikov1, T. Nishioka1, T. Fujimoto1

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 191-204, 2004, DOI:10.3970/cmc.2004.001.191

    Abstract Phenomena of dynamic crack branching are investigated numerically from a macroscopic point of view. Repetitive branching phenomena, interaction of cracks after bifurcation and their stability, bifurcation into two and three branches were the objectives of this research. For the analysis of dynamic crack branching, recently we developed moving finite element method based on Delaunay automatic triangulation [Nishioka, Furutuka, Tchouikov and Fujimoto (2002)]. In this study this method was extended to be applicable for complicated crack branching phenomena, such as bifurcation of the propagating crack into more than two branches, multiple crack bifurcation and so on. The switching method of the… More >

  • Open Access

    ARTICLE

    Stress Concentrations Caused by Embedded Optical Fiber Sensors in Composite Laminates

    Kunigal Shivakumar1, Anil Bhargava2

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 173-190, 2004, DOI:10.3970/cmc.2004.001.173

    Abstract The fiber optic sensor (FOS) embedded perpendicular to reinforcing fibers causes an `Eye' shaped defect. The length is about 16 times fiber optic radius (RFos) and height is about 2RFos. The eye contains fiber optics in the center surrounded by an elongated resin pocket. Embedding FOS causes geometric distortion of the reinforcing fiber over a height equal to 6 to 8 RFos. This defect causes severe stress concentration at the root of the resin pocket, the interface (in the composite) between the optical fiber and the composite, and at 90° to load direction in the composite. The stress concentration was… More >

  • Open Access

    ARTICLE

    Prediction of the behavior of RC Beams Strengthened with FRP Plates

    Ricardo Perera1

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 153-172, 2004, DOI:10.3970/cmc.2004.001.153

    Abstract Epoxy-bonding a composite plate to the tension face is an effective technique to repair reinforced concrete beams since it increases their strength and rigidity. In this paper, the structural behavior of reinforced concrete beams with fibre reinforced polymer (FRP) plates is studied numerically. For it, a numerical damage model is used in order to predict their strength, stiffness and failure modes observed in experimental tests taking into account the influence of different variables such as the amount of steel reinforcement, the type and amount of external reinforcement, the plate length, etc. The consideration of concrete cracking and the yielding of… More >

  • Open Access

    ARTICLE

    An Assumed Strain Triangular Solid Element for Efficient Analysis of Plates and Shells with Finite Rotation

    J. H. Kim1, Y. H. Kim 1, S. W. Lee2

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 141-152, 2004, DOI:10.3970/cmc.2004.001.141

    Abstract A simple triangular solid shell element formulation is developed for efficient analysis of plates and shells undergoing finite rotations. The kinematics of the present solid shell element formulation is purely vectorial with only three translational degrees of freedom per node. Accordingly, the kinematics of deformation is free of the limitation of small angle increments, and thus the formulation allows large load increments in the analysis of finite rotation. An assumed strain field is carefully selected to alleviate the locking effect without triggering undesirable spurious kinematic modes. In addition, the curved surface of shell structures is modeled with flat facet elements… More >

  • Open Access

    ARTICLE

    A Meshless Local Petrov-Galerkin (MLPG) Approach for 3-Dimensional Elasto-dynamics

    Z. D. Han1, S. N. Atluri2

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 129-140, 2004, DOI:10.3970/cmc.2004.001.129

    Abstract A Meshless Local Petrov-Galerkin (MLPG) method has been developed for solving 3D elasto-dynamic problems. It is derived from the local weak form of the equilibrium equations by using the general MLPG concept. By incorporating the moving least squares (MLS) approximations for trial and test functions, the local weak form is discretized, and is integrated over the local sub-domain for the transient structural analysis. The present numerical technique imposes a correction to the accelerations, to enforce the kinematic boundary conditions in the MLS approximation, while using an explicit time-integration algorithm. Numerical examples for solving the transient response of the elastic structures… More >

  • Open Access

    ARTICLE

    Radial Basis Function and Genetic Algorithms for Parameter Identification to Some Groundwater Flow Problems

    B. Amaziane1, A. Naji2, D. Ouazar3

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 117-128, 2004, DOI:10.3970/cmc.2004.001.117

    Abstract In this paper, a meshless method based on Radial Basis Functions (RBF) is coupled with genetic algorithms for parameter identification to some selected groundwater flow applications. The treated examples are generated by the diffusion equation with some specific boundary conditions describing the groundwater fluctuation in a leaky confined aquifer system near open tidal water. To select the best radial function interpolation and show the powerful of the method in comparison to domain based discretization methods, Multiquadric (MQ), Thin-Plate Spline (TPS) and Conical type functions are investigated and compared to finite difference results or analytical one. Through two sample problems in… More >

  • Open Access

    ARTICLE

    Dielectric Breakdown Model For An Electrically Impermeable Crack In A Piezoelectric Material

    Tong-Yi Zhang1

    CMC-Computers, Materials & Continua, Vol.1, No.1, pp. 107-116, 2004, DOI:10.3970/cmc.2004.001.107

    Abstract The present work presents a strip Dielectric Breakdown (DB) model for an electrically impermeable crack in a piezoelectric material. In the DB model, the dielectric breakdown region is assumed to be a strip along the crack's front line. Along the DB strip, the electric field strength is equal to the dielectric breakdown strength. The DB model is exactly in analogy with the mechanical Dugdale model. Two energy release rates emerge from the analysis. An applied energy release rate appears when evaluating J-integral along a contour surrounding both the dielectric breakdown strip and the crack tip, whereas a local energy release… More >

  • Open Access

    ARTICLE

    Elasto-plastic Analysis of Two-dimensional Orthotropic Bodies with the Boundary Element Method

    X.S. Sun1, L.X. Huang1, Y.H. Liu1, Z.Z. Cen1,2

    CMC-Computers, Materials & Continua, Vol.1, No.1, pp. 91-106, 2004, DOI:10.3970/cmc.2004.001.091

    Abstract The Boundary Element Method (BEM) is introduced to analyze the elasto-plastic problems of 2-D orthotropic bodies. With the help of known boundary integral equations and fundamental solutions, a numerical scheme for elasto-plastic analysis of 2-D orthotropic problems with the BEM is developed. The Hill orthotropic yield criterion is adopted in the plastic analysis. The initial stress method and tangent predictor-radial return algorithm are used to determine the stress state in solving the nonlinear equation with the incremental iteration method. Finally, numerical examples show that the BEM is effective and reliable in analyzing elasto-plastic problems of orthotropic bodies. More >

  • Open Access

    REVIEW

    Computational Nano-mechanics and Multi-scale Simulation

    gping Shen1, S. N. Atluri1

    CMC-Computers, Materials & Continua, Vol.1, No.1, pp. 59-90, 2004, DOI:10.3970/cmc.2004.001.059

    Abstract This article provides a review of the computational nanomechanics, from the ab initio methods to classical molecular dynamics simulations, and multi- temporal and spatial scale simulations. The recent improvements and developments are briefly discussed. Their applications in nanomechanics and nanotubes are also summarized. More >

  • Open Access

    ARTICLE

    The Effect of the Reynolds Number on Lateral Migration of Nonneutrally-Buoyant Spherical Particles in Poiseuille Flow

    S.-C. Hsiao1, M.S. Ingber2

    CMC-Computers, Materials & Continua, Vol.1, No.1, pp. 51-58, 2004, DOI:10.3970/cmc.2004.001.051

    Abstract The lateral migration of nonneutrally-buoyant spherical particles in Poiseuille flow is investigated numerically using the boundary element method. In particular, the steady, Navier-Stokes equations are solved using a classical domain integration method treating the nonlinear terms as pseudo-body forces. The numerical results for the lateral migration velocity are compared with experimental data. The numerical results indicate that the lateral migration velocity does not scale linearly with the Reynolds number. The methodology is extended to include non-Newtonian power-law fluids. The migration velocity is significantly affected for particles suspended in this class of fluids and can actually change direction for large values… More >

Displaying 4461-4470 on page 447 of 5350. Per Page