Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5,427)
  • Open Access

    ARTICLE

    Experimental Study on Mechanical Properties Degradation of TP110TS Tube Steel in High H2S Corrosive Environment

    Deli Gao1, Zengxin Zhao2

    CMC-Computers, Materials & Continua, Vol.26, No.2, pp. 157-166, 2011, DOI:10.3970/cmc.2011.026.157

    Abstract The research on casing corrosion in sour environment by a synergism of sweet corrosion and H2S corrosion has become the basis of casing selection and casing string safety evaluation with more and more sour reservoirs containing high H2S concentration being developed. It is essential to scientifically utilize casing service ability and reasonably control production rate of gas well to achieve the effective and safe developing of gas resources during the safety period of casing service with a precise casing life prediction. Scanning electron microscopy and tensile testing were applied to investigate the corrosion of TP110TS tube steel in stimulant solution… More >

  • Open Access

    ARTICLE

    The Anisotropy of Young's Modulus in Bones

    Ligia Munteanu1, Veturia Chiroiu1, Valeria Mosnegutu1

    CMC-Computers, Materials & Continua, Vol.26, No.2, pp. 137-156, 2011, DOI:10.3970/cmc.2011.026.137

    Abstract In this paper, yet another method for evaluating the elastic modulus for human bones is introduced and investigated. This method adopts the Jankowski and Tsakalakos strain energy function in which, the Born-Mayer energy term is the predominant term for calculations the elastic constants. By taking accounts the directional aspects of the spatial structure of bones, we obtain different values for the Young's modulus depending on the direction of the applied force with respect to the material's structure. The inverse problem analyzed in this paper is solved by inversion of the experimental data. An efficient stopping criterion is adopted to cease… More >

  • Open Access

    ARTICLE

    Modeling of Moisture Diffusion in Permeable Fiber-Reinforced Polymer Composites Using Heterogeneous Hybrid Moisture Element Method

    De-Shin Liu1, Zhen-Wei Zhuang1, Shaw-Ruey Lyu2,3, Cho-Liang Chung4, Pai-Chen Lin1

    CMC-Computers, Materials & Continua, Vol.26, No.2, pp. 111-136, 2011, DOI:10.3970/cmc.2011.026.111

    Abstract This study proposes a two-dimensional heterogeneous hybrid moisture element method (HHMEM) for modeling transient moisture diffusion in permeable fiber-reinforced polymer composites.
    The HHMEM scheme is based on a heterogeneous hybrid moisture element(HHME), with properties determined through an equivalent hybrid moisture capacitance/conductance matrix. This matrix was calculated using the conventional finite element formulation in space discretization as well as the θ-method in time discretization with similar mass/stiffness properties and matrix condensing operations. A coupled HHME-FE scheme was developed and implemented in computer code MATLAB in order to analyze the transient moisture diffusion characteristics of composite materials containing multiple permeable fibers. The… More >

  • Open Access

    ARTICLE

    Torsional Wave Propagation in the Finitely Pre-Stretched Hollow Bi-Material Compound Circular Cylinder

    Surkay D. Akbarov1,2, Tamer Kepceler1, M. Mert Egilmez1, Ferhat Dikmen1

    CMC-Computers, Materials & Continua, Vol.26, No.2, pp. 91-110, 2011, DOI:10.3970/cmc.2011.026.091

    Abstract This paper studies the torsional wave dispersion in the hollow bi-material compounded cylinder with finite initial strains. The investigations are carried out within the scope of the piecewise homogeneous body model with the use of the three-dimensional linearized theory of elastic waves in initially stressed bodies. The mechanical relations of the materials of the cylinders are described through the harmonic potential. The numerical results on the influence of the initial stretching or compression of the cylinders along the torsional wave propagation direction are presented and discussed More >

  • Open Access

    ARTICLE

    A New Inverse Algorithm for Tomographic Reconstruction of Damage Images Using Lamb Waves

    M. Morii1, N. Hu1,2, H. Fukunaga3, J.H. Li1, Y.L. Liu1, S. Atobe3, Alamusi3, J.H. Qiu4

    CMC-Computers, Materials & Continua, Vol.26, No.1, pp. 37-66, 2011, DOI:10.3970/cmc.2011.026.037

    Abstract Lamb wave tomography (LWT) is a potential and efficient technique for non-destructive tomographic reconstruction of damage images in structural components or materials. A new two-stage inverse algorithm with a small amount of scanning data for quickly reconstructing damage images in aluminum and CFRP laminated plates was proposed in this paper. Due to its high sensitivity to damages, the amplitude decrease of transmitted Lamb waves after travelling through the inspected region was employed as a key signal parameter related to the attenuation of Lamb waves in propagation routes. A through-thickness circular hole and a through-thickness elliptical hole in two aluminum plates,… More >

  • Open Access

    ARTICLE

    Frequency Shift Curve Based Damage Detection Method for Beam Structures

    Y. Zhang1,2, Z.H. Xiang1,3

    CMC-Computers, Materials & Continua, Vol.26, No.1, pp. 19-36, 2011, DOI:10.3970/cmc.2011.026.019

    Abstract Vibration based damage detection methods play an important role in the maintenance of beam structures such as bridges. However, most of them require the accurate measurement of structural mode shapes, which may not be easily satisfied in practice. Since the measurement of frequencies is more accurate than that of mode shapes, this paper proposes a frequency shift curve (FSC) method, based on the equivalence between the FSC due to auxiliary mass and the mode shape square, which has been demonstrated to be effective in structural damage detection. Two damage indices based on the FSC are developed, which are called the… More >

  • Open Access

    ARTICLE

    A Modified Prandtl-Ishlinskii Model and its Applications to Inverse Control of Piezoelectric Actuators

    J. H. Qiu1,2, H. Jiang1, H. L. Ji1, N. Hu3

    CMC-Computers, Materials & Continua, Vol.26, No.1, pp. 1-18, 2011, DOI:10.3970/cmc.2011.026.001

    Abstract Piezoelectric actuators based motion-producing devices are widely used in precision machining, deformable mirrors, micropumps and piezoelectric injection systems. However, because of their hysteresis nonlinear property, the piezoelectric actuators can not provide absolutely precise displacements. To solve this problem, researchers applied inverse control method to compensate the nonlinearity of piezoelectric actuators, and the inverse models are mainly based on traditional hysteresis models such as the Preiasch model or Prandtl-Ishlinskii model. In this paper, a new approach for inverse control of piezoelectric actuators is presented. The new method utilize a modified Prandtl-Ishlinskii model which is based on a combination of two asymmetric… More >

  • Open Access

    ARTICLE

    A Semicontinuum Model for SixGe1 - x Alloys: Calculation of Their Elastic Characteristics and the Strain Field at the Free Surface of a Semi-Infinite Alloy

    V.K. Tewary1, M. D. Vaudin2

    CMC-Computers, Materials & Continua, Vol.25, No.3, pp. 265-290, 2011, DOI:10.3970/cmc.2011.025.265

    Abstract A semicontiuum Green's-function-based model is proposed for analysis of averaged mechanical characteristics of SixGe1 - x. The atomistic forces in the model are distributed at discrete lattice sites, but the Green's function is approximated by the continuum GF in the far field and by the averaged lattice GF in the near field. Averaging is achieved by replacing Si and Ge atoms by identical hypothetical atoms that are x fraction Si and (1-x) fraction Ge. The parameters of the model are derived using the atomistic model from the interatomic potential between the hypothetical atoms. The interatomic potential is obtained from the… More >

  • Open Access

    ARTICLE

    A Highly Accurate Multi-Scale Full/Half-Order Polynomial Interpolation

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.25, No.3, pp. 239-264, 2011, DOI:10.3970/cmc.2011.025.239

    Abstract For the computational applications in several areas, we propose a single-scale and a multi-scale diagonal preconditioners to reduce the condition number of Vandermonde matrix. Then a new algorithm is given to solve the inversion of the resulting coefficient matrix after multiplying by a preconditioner to the Vandermonde matrix. We apply the new techniques to the interpolation of data by using very high-order polynomials, where the Runge phenomenon disappears even the equidistant nodes are used. In addition, we derive a new technique by employing an m-order polynomial with a multi-scale technique to interpolate 2m+1 data. Numerical results confirm the validity of… More >

  • Open Access

    ARTICLE

    A Differential Quadrature Method for Multi-Dimensional Inverse Heat Conduction Problem of Heat Source

    Jiun-Yu Wu1,2, Chih-Wen Chang3

    CMC-Computers, Materials & Continua, Vol.25, No.3, pp. 215-238, 2011, DOI:10.3970/cmc.2011.025.215

    Abstract In this paper, we employ the differential quadrature method (DQM) to tackle the inverse heat conduction problem (IHCP) of heat source. These advantages of this numerical approach are that no a priori presumption is made on the functional form of the estimates, and that evaluated heat source can be obtained directly in the calculation process. Seven examples show the effectiveness and accuracy of our algorism in providing excellent estimates of unknown heat source from the given data. We find that the proposed scheme is applicable to the IHCP of heat source. Even though the noise is added to the exact… More >

Displaying 4651-4660 on page 466 of 5427. Per Page