Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (936)
  • Open Access

    ARTICLE

    Malfunction Diagnosis of the GTCC System under All Operating Conditions Based on Exergy Analysis

    Xinwei Wang1,2,*, Ming Li1, Hankun Bing1, Dongxing Zhang1, Yuanshu Zhang1

    Energy Engineering, Vol.121, No.12, pp. 3875-3898, 2024, DOI:10.32604/ee.2024.056237 - 22 November 2024

    Abstract After long-term operation, the performance of components in the GTCC system deteriorates and requires timely maintenance. Due to the inability to directly measure the degree of component malfunction, it is necessary to use advanced exergy analysis diagnosis methods to characterize the components’ health condition (degree of malfunction) through operation data of the GTCC system. The dissipative temperature is used to describe the degree of malfunction of different components in the GTCC system, and an advanced exergy analysis diagnostic method is used to establish a database of overall operating condition component malfunctions in the GTCC system.… More >

  • Open Access

    ARTICLE

    Thermodynamic, Economic, and Environmental Analyses and Multi-Objective Optimization of Dual-Pressure Organic Rankine Cycle System with Dual-Stage Ejector

    Guowei Li1,*, Shujuan Bu2, Xinle Yang2, Kaijie Liang1, Zhengri Shao1, Xiaobei Song1, Yitian Tang3, Dejing Zong4

    Energy Engineering, Vol.121, No.12, pp. 3843-3874, 2024, DOI:10.32604/ee.2024.056195 - 22 November 2024

    Abstract A novel dual-pressure organic Rankine cycle system (DPORC) with a dual-stage ejector (DE-DPORC) is proposed. The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the high-pressure expander to pressurize a large quantity of exhaust gas to perform work for the low-pressure expander. This innovative approach addresses condensing pressure limitations, reduces power consumption during pressurization, minimizes heat loss, and enhances the utilization efficiency of waste heat steam. A thermodynamic model is developed with net output work, thermal efficiency, and exergy efficiency (Wnet, ηt, ηex) as evaluation criteria, an economic model is established… More >

  • Open Access

    ARTICLE

    Rapid Parameter-Optimizing Strategy for Plug-and-Play Devices in DC Distribution Systems under the Background of Digital Transformation

    Zhi Li1, Yufei Zhao2, Yueming Ji2, Hanwen Gu2, Zaibin Jiao2,*

    Energy Engineering, Vol.121, No.12, pp. 3899-3927, 2024, DOI:10.32604/ee.2024.055899 - 22 November 2024

    Abstract By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement, information communication, and other fields, the digital DC distribution network can efficiently and reliably access Distributed Generator (DG) and Energy Storage Systems (ESS), exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play (PnP) operations. However, during device plug-in and -out processes, improper system parameters may lead to small-signal stability issues. Therefore, before executing PnP operations, conducting stability analysis and adjusting parameters swiftly is crucial. This study introduces a four-stage strategy for parameter optimization to enhance… More >

  • Open Access

    REVIEW

    Research Progress of Photovoltaic Power Prediction Technology Based on Artificial Intelligence Methods

    Daixuan Zhou1, Yujin Liu1, Xu Wang2, Fuxing Wang1, Yan Jia2,*

    Energy Engineering, Vol.121, No.12, pp. 3573-3616, 2024, DOI:10.32604/ee.2024.055853 - 22 November 2024

    Abstract With the increasing proportion of renewable energy in China’s energy structure, among which photovoltaic power generation is also developing rapidly. As the photovoltaic (PV) power output is highly unstable and subject to a variety of factors, it brings great challenges to the stable operation and dispatch of the power grid. Therefore, accurate short-term PV power prediction is of great significance to ensure the safe grid connection of PV energy. Currently, the short-term prediction of PV power has received extensive attention and research, but the accuracy and precision of the prediction have to be further improved. More > Graphic Abstract

    Research Progress of Photovoltaic Power Prediction Technology Based on Artificial Intelligence Methods

  • Open Access

    ARTICLE

    Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb & Observe under Partial Shading Conditions

    Zhaoqiang Wang1, Fuyin Ni2,*

    Energy Engineering, Vol.121, No.12, pp. 3779-3799, 2024, DOI:10.32604/ee.2024.055535 - 22 November 2024

    Abstract Under the partial shading conditions (PSC) of Photovoltaic (PV) modules in a PV hybrid system, the power output curve exhibits multiple peaks. This often causes traditional maximum power point tracking (MPPT) methods to fall into local optima and fail to find the global optimum. To address this issue, a composite MPPT algorithm is proposed. It combines the improved kepler optimization algorithm (IKOA) with the optimized variable-step perturb and observe (OIP&O). The update probabilities, planetary velocity and position step coefficients of IKOA are nonlinearly and adaptively optimized. This adaptation meets the varying needs of the initial… More >

  • Open Access

    ARTICLE

    Combined Wind-Storage Frequency Modulation Control Strategy Based on Fuzzy Prediction and Dynamic Control

    Weiru Wang1, Yulong Cao1,*, Yanxu Wang1, Jiale You1, Guangnan Zhang1, Yu Xiao2

    Energy Engineering, Vol.121, No.12, pp. 3801-3823, 2024, DOI:10.32604/ee.2024.055398 - 22 November 2024

    Abstract To ensure frequency stability in power systems with high wind penetration, the doubly-fed induction generator (DFIG) is often used with the frequency fast response control (FFRC) to participate in frequency response. However, a certain output power suppression amount (OPSA) is generated during frequency support, resulting in the frequency modulation (FM) capability of DFIG not being fully utilised, and the system’s unbalanced power will be increased during speed recovery, resulting in a second frequency drop (SFD) in the system. Firstly, the frequency response characteristics of the power system with DFIG containing FFRC are analysed. Then, based… More >

  • Open Access

    ARTICLE

    Data-Driven Modeling for Wind Turbine Blade Loads Based on Deep Neural Network

    Jianyong Ao1, Yanping Li1, Shengqing Hu1, Songyu Gao2, Qi Yao2,*

    Energy Engineering, Vol.121, No.12, pp. 3825-3841, 2024, DOI:10.32604/ee.2024.055250 - 22 November 2024

    Abstract Blades are essential components of wind turbines. Reducing their fatigue loads during operation helps to extend their lifespan, but it is difficult to quickly and accurately calculate the fatigue loads of blades. To solve this problem, this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis, feature selection, and model construction. In the mechanism analysis part, the generation mechanism of blade loads and the load theoretical calculation method based on material damage theory are analyzed, and four measurable operating state parameters related to blade loads are… More >

  • Open Access

    ARTICLE

    Modeling, Simulation, and Risk Analysis of Battery Energy Storage Systems in New Energy Grid Integration Scenarios

    Xiaohui Ye1,*, Fucheng Tan1, Xinli Song2, Hanyang Dai2, Xia Li2, Shixia Mu2, Shaohang Hao2

    Energy Engineering, Vol.121, No.12, pp. 3689-3710, 2024, DOI:10.32604/ee.2024.055200 - 22 November 2024

    Abstract Energy storage batteries can smooth the volatility of renewable energy sources. The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system (BESS). However, the current modeling of grid-connected BESS is overly simplistic, typically only considering state of charge (SOC) and power constraints. Detailed lithium (Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions. Additionally, there is a lack of real-time batteries risk assessment frameworks. To address these issues, in this… More >

  • Open Access

    ARTICLE

    Impact of Different Rooftop Coverings on Photovoltaic Panel Temperature

    Aws Al-Akam1,*, Ahmed A. Abduljabbar2, Ali Jaber Abdulhamed1

    Energy Engineering, Vol.121, No.12, pp. 3761-3777, 2024, DOI:10.32604/ee.2024.055198 - 22 November 2024

    Abstract Photovoltaic (PV) panels are essential to the global transition towards sustainable energy, offering a clean, renewable source that reduces reliance on fossil fuels and mitigates climate change. High temperatures can significantly affect the performance of photovoltaic (PV) panels by reducing their efficiency and power output. This paper explores the consequential effect of various rooftop coverings on the thermal performance of photovoltaic (PV) panels. It investigates the relationship between the type of rooftop covering materials and the efficiency of PV panels, considering the thermal performance and its implications for enhancing their overall performance and sustainability. The… More >

  • Open Access

    ARTICLE

    Production of Light Fraction-Based Pyrolytic Fuel from Spirulina platensis Microalgae Using Various Low-Cost Natural Catalysts and Insertion

    Indra Mamad Gandidi1,2,*, Sukarni Sukarni3,4, Avita Ayu Permanasari3, Purnami Purnami5, Tuan Amran Tuan Abdullah6, Anwar Johari6, Nugroho Agung Pambudi7,*

    Energy Engineering, Vol.121, No.12, pp. 3635-3648, 2024, DOI:10.32604/ee.2024.054943 - 22 November 2024

    Abstract The use of catalysts has significantly enhanced the yield and quality of in-situ pyrolysis products. However, there is a lack of understanding regarding pyrolysis approaches that utilize several low-cost natural catalysts (LCC) and their placement within the reactor. Therefore, this study aims to examine the effects of various LCC on the in-situ pyrolysis of spirulina platensis microalgae (SPM) and investigate the impact of different types of catalysts. We employed LCC such as zeolite, dolomite, kaolin, and activated carbon, with both layered and uniformly mixed LCC-SPM placements. Each experiment was conducted at a constant temperature of 500°C… More > Graphic Abstract

    Production of Light Fraction-Based Pyrolytic Fuel from <i>Spirulina platensis</i> Microalgae Using Various Low-Cost Natural Catalysts and Insertion

Displaying 291-300 on page 30 of 936. Per Page