Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (936)
  • Open Access

    ARTICLE

    Applying an Ordinal Priority Approach Based Neutrosophic Fuzzy Axiomatic Design Approach to Develop Sustainable Geothermal Energy Source

    Chia-Nan Wang, Thuy-Duong Thi Pham*, Nhat-Luong Nhieu

    Energy Engineering, Vol.121, No.8, pp. 2039-2064, 2024, DOI:10.32604/ee.2024.050224 - 19 July 2024

    Abstract Geothermal energy is considered a renewable, environmentally friendly, especially carbon-free, sustainable energy source that can solve the problem of climate change. In general, countries with geothermal energy resources are the ones going through the ring of fire. Therefore, not every country is lucky enough to own this resource. As a country with 117 active volcanoes and within the world’s ring of fire, it is a country whose geothermal resources are estimated to be about 40% of the world’s geothermal energy potential. However, the percentage used compared to the geothermal potential is too small. Therefore, this… More >

  • Open Access

    EDITORIAL

    Key Issues for Modelling, Operation, Management and Diagnosis of Lithium Batteries: Current States and Prospects

    Bo Yang1,*, Yucun Qian1, Jianzhong Xu2, Yaxing Ren3, Yixuan Chen4

    Energy Engineering, Vol.121, No.8, pp. 2085-2091, 2024, DOI:10.32604/ee.2024.050083 - 19 July 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Lithium-Ion Battery Pack Based on Fuzzy Logic Control Research on Multi-Layer Equilibrium Circuits

    Tiezhou Wu, Yukan Zhang*

    Energy Engineering, Vol.121, No.8, pp. 2231-2255, 2024, DOI:10.32604/ee.2024.049883 - 19 July 2024

    Abstract In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs, a new multilayer equilibrium topology is designed in this paper. The structure adopts a hierarchical structure design, which includes intra-group equilibrium, primary inter-group equilibrium and secondary inter-group equilibrium. This structure greatly increases the number of equilibrium paths for lithium-ion batteries, thus shortening the time required for equilibrium, and improving the overall efficiency. In terms of control strategy, fuzzy logic control (FLC) is chosen to control the size of the equilibrium current during the equilibrium process. We… More >

  • Open Access

    ARTICLE

    Hybrid Multi-Infeed Interaction Factor Calculation Method Considering Voltage Regulation Control Characteristics of Voltage Source Converter

    Shan Liu1, Chengbin Chi1, Fengze Han2, Yanan Wu1, Lin Zhu1, Tuo Wang2,*

    Energy Engineering, Vol.121, No.8, pp. 2257-2273, 2024, DOI:10.32604/ee.2024.049861 - 19 July 2024

    Abstract Voltage source converter based high voltage direct current (VSC-HVDC) can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid. In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current (LCC-HVDC), this paper proposes a hybrid multi-infeed interaction factor (HMIIF) calculation method considering the voltage regulation control characteristics of VSC-HVDC. Firstly, for a hybrid multi-infeed high voltage direct current system, an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.… More >

  • Open Access

    ARTICLE

    A Situational Awareness Method for Initial Insulation Fault of Distribution Network Based on Multi-Feature Index Comprehensive Evaluation

    Hao Bai1, Beiyuan Liu2,*, Hongwen Liu3, Jupeng Zeng2, Jian Ouyang4, Yipeng Liu1

    Energy Engineering, Vol.121, No.8, pp. 2191-2211, 2024, DOI:10.32604/ee.2024.049848 - 19 July 2024

    Abstract Most ground faults in distribution network are caused by insulation deterioration of power equipment. It is difficult to find the insulation deterioration of the distribution network in time, and the development trend of the initial insulation fault is unknown, which brings difficulties to the distribution inspection. In order to solve the above problems, a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed. Firstly, the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network, and the… More >

  • Open Access

    ARTICLE

    Impact of Blade-Flapping Vibration on Aerodynamic Characteristics of Wind Turbines under Yaw Conditions

    Shaokun Liu1, Zhiying Gao1,2,*, Rina Su1,2, Mengmeng Yan1, Jianwen Wang1,2

    Energy Engineering, Vol.121, No.8, pp. 2213-2229, 2024, DOI:10.32604/ee.2024.049616 - 19 July 2024

    Abstract Although the aerodynamic loading of wind turbine blades under various conditions has been widely studied, the radial distribution of load along the blade under various yaw conditions and with blade flapping phenomena is poorly understood. This study aims to investigate the effects of second-order flapwise vibration on the mean and fluctuation characteristics of the torque and axial thrust of wind turbines under yaw conditions using computational fluid dynamics (CFD). In the CFD model, the blades are segmented radially to comprehensively analyze the distribution patterns of torque, axial load, and tangential load. The following results are… More >

  • Open Access

    ARTICLE

    Production Capacity Prediction Method of Shale Oil Based on Machine Learning Combination Model

    Qin Qian1, Mingjing Lu1,2,*, Anhai Zhong1, Feng Yang1, Wenjun He1, Min Li1

    Energy Engineering, Vol.121, No.8, pp. 2167-2190, 2024, DOI:10.32604/ee.2024.049430 - 19 July 2024

    Abstract The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics, engineering quality, and well conditions. These relationships, nonlinear in nature, pose challenges for accurate description through physical models. While field data provides insights into real-world effects, its limited volume and quality restrict its utility. Complementing this, numerical simulation models offer effective support. To harness the strengths of both data-driven and model-driven approaches, this study established a shale oil production capacity prediction model based on a machine learning combination model. Leveraging fracturing development data from 236 wells… More >

  • Open Access

    REVIEW

    Maximum Power Point Tracking Technology for PV Systems: Current Status and Perspectives

    Bo Yang1,2, Rui Xie1, Zhengxun Guo3,4,*

    Energy Engineering, Vol.121, No.8, pp. 2009-2022, 2024, DOI:10.32604/ee.2024.049423 - 19 July 2024

    Abstract Maximum power point tracking (MPPT) technology plays a key role in improving the energy conversion efficiency of photovoltaic (PV) systems, especially when multiple local maximum power points (LMPPs) occur under partial shading conditions (PSC). It is necessary to modify the operating point efficiently and accurately with the help of MPPT technology to maximize the collected power. Even though a lot of research has been carried out and impressive progress achieved for MPPT technology, it still faces some challenges and dilemmas. Firstly, the mathematical model established for PV cells is not precise enough. Second, the existing… More > Graphic Abstract

    Maximum Power Point Tracking Technology for PV Systems: Current Status and Perspectives

  • Open Access

    ARTICLE

    CFD Investigation of Diffusion Law and Harmful Boundary of Buried Natural Gas Pipeline in the Mountainous Environment

    Liqiong Chen1, Kui Zhao1, Kai Zhang1,*, Duo Xv1, Hongxvan Hu2, Guoguang Ma1, Wenwen Zhan3

    Energy Engineering, Vol.121, No.8, pp. 2143-2165, 2024, DOI:10.32604/ee.2024.049362 - 19 July 2024

    Abstract The leakage gas from a buried natural gas pipelines has the great potential to cause economic losses and environmental pollution owing to the complexity of the mountainous environment. In this study, computational fluid dynamics (CFD) method was applied to investigate the diffusion law and hazard range of buried natural gas pipeline leakage in mountainous environment. Based on cloud chart, concentration at the monitoring site and hazard range of lower explosion limit (LEL) and upper explosion limit (UEL), the influences of leakage hole direction and shape, soil property, burial depth, obstacle type on the diffusion law… More >

  • Open Access

    ARTICLE

    Analyzing the Wind-Dominant Electricity Market under Coexistence of Regulated and Deregulated Power Trading

    Yirui Li1, Dongliang Xiao1,3,*, Haoyong Chen1, Weijun Cai1, Josue Campos do Prado2

    Energy Engineering, Vol.121, No.8, pp. 2093-2127, 2024, DOI:10.32604/ee.2024.049232 - 19 July 2024

    Abstract Currently, both regulated and deregulated power trading exist in China’s power system, which has caused imbalanced funds in the electricity market. In this paper, a simulation analysis of the electricity market with wind energy resources is conducted, and the calculation methods of unbalanced funds are investigated systematically. In detail, the calculation formulas of unbalanced funds are illustrated based on their definition, and a two-track electricity market clearing model is established. Firstly, the concept of the dual-track system is explained, and the specific calculation formulas of various types of unbalanced funds are provided. Next, considering the More >

Displaying 361-370 on page 37 of 936. Per Page