Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,174)
  • Open Access

    ARTICLE

    The Effect of Pore Solution on the Hysteretic Curve of Expansive Soil under Cyclic Loading

    Xinshan Zhuang*, Wu Wen, Rong Zhou, Gaoliang Tao, Wentao Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1963-1981, 2023, DOI:10.32604/fdmp.2023.026348 - 08 March 2023

    Abstract A dynamic triaxial instrument was used to study the effects of different concentrations of sodium chloride and stress amplitudes on the dynamic properties of an expansive soil under cyclic loading. In particular, four parameters were considered in such a parametric investigation, namely, hysteresis curve morphology characteristic non-closure degree εp, the ratio of the short and long axis α, the slope of the long axis k and the enclosed area S. The results show that with an increase in the sodium chloride concentration, the soil particle double electric layer becomes thinner, the distance between soil particles decreases,… More >

  • Open Access

    ARTICLE

    Simulation of the Production Performances of Horizontal Wells with a Fractured Shale Gas Reservoir

    Hongsha Xiao1, Ruihan Zhang2,*, Man Chen1, Cui Jing1, Shangjun Gao1, Chao Chen1, Huiyan Zhao1, Xin Huang2,*, Bo Kang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1803-1815, 2023, DOI:10.32604/fdmp.2023.026143 - 08 March 2023

    Abstract The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated. In particular, a micro-seismic cloud diagram is used to describe the fracture network, and accordingly, a production model is introduced based on a multi-scale flow mechanism. A finite volume method is then exploited for the integration of the model equations. The effects of apparent permeability, conductivity, Langmuir volume, and bottom hole pressure on gas well production are studied accordingly. The simulation results show that ignoring the micro-scale flow mechanism of the shale gas leads to underestimating the More > Graphic Abstract

    Simulation of the Production Performances of Horizontal Wells with a Fractured Shale Gas Reservoir

  • Open Access

    ARTICLE

    Interaction of Foam and Microemulsion Components in Low-Tension-Gas Flooding

    Jing Zhao, Jun Yang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1951-1961, 2023, DOI:10.32604/fdmp.2023.026115 - 08 March 2023

    Abstract Low-Tension-Foam (LTF) flooding is an emerging enhanced oil recovery technique for low-permeability carbonate reservoirs. Foam capacity is closely related to the salinity environment (or, equivalently, the phase behavior of the oil/water/surfactant system). Therefore, the interactions between microemulsion and foam components are of primary importance in the LTF process. In this study, the phase behavior of an oil/water/surfactant system under equilibrium is analyzed, firstly by assuming perfect mixing. Meanwhile, the formation kinetics of microemulsion are monitored through a novel low-field NMR technique, which is able to provide quantitative assessment on the microemulsion evolution characteristics. Then, foam More >

  • Open Access

    ARTICLE

    On the Use of Recycled Asphalt and Trinidad Lake Asphalt (TLA) for the Preparation of High Modulus Asphalt Concrete

    Chao Li1,*, Guodong Zeng1, Yang Fang1, Hongming Huang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1939-1950, 2023, DOI:10.32604/fdmp.2023.026103 - 08 March 2023

    Abstract Rutting of asphalt pavement occurs earlier and is more serious under the increasingly heavy traffic load conditions that can be found in subtropical monsoon climate regions. High modulus asphalt concrete (HMAC) with excellent anti-rutting and anti-fatigue properties is generally used to mitigate this issue. Given the relatively high cost of the additives used in this type of asphalt, in this study the feasibility of using recycled asphalt mixture (RAP) and Trinidad lake asphalt (TLA) for the preparation of HMAC is considered. The mineral composition of the RAP is first analyzed, then the TLA modified asphalt… More >

  • Open Access

    ARTICLE

    Hydrophobic Small-Molecule Polymers as High-Temperature-Resistant Inhibitors in Water-Based Drilling Fluids

    Xuyang Yao1,*, Kecheng Liu1, Zenan Zhou1, Jun Zhou1, Xianbin Huang2, Tiemei Lu1, Yongsheng Yu1, He Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1775-1787, 2023, DOI:10.32604/fdmp.2023.025843 - 08 March 2023

    Abstract Water-based drilling fluids can cause hydration of the wellbore rocks, thereby leading to instability. This study aimed to synthesize a hydrophobic small-molecule polymer (HLMP) as an inhibitor to suppress mud shale hydration. An infrared spectral method and a thermogravimetric technique were used to characterize the chemical composition of the HLMP and evaluate its heat stability. Experiments were conducted to measure the linear swelling, rolling recovery rate, and bentonite inhibition rate and evaluate accordingly the inhibition performance of the HLMP. Moreover, the HLMP was characterized through measurements of the zeta potential, particle size distribution, contact angles,… More > Graphic Abstract

    Hydrophobic Small-Molecule Polymers as High-Temperature-Resistant Inhibitors in Water-Based Drilling Fluids

  • Open Access

    ARTICLE

    Influence of the Inclination Angle on Mixed Convection and Heat Transfer in a “T” Shaped Double Enclosure

    M’Barka Mourabit1,*, Meryam Meknassi2, Soukaina Fekkar1, Soumia Mordane1, Hicham Rouijaa3, El Alami Semma4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1753-1774, 2023, DOI:10.32604/fdmp.2023.025739 - 08 March 2023

    Abstract

    The effect of the tilt angle on mixed convection and related heat transfer in a “T” shaped double enclosure with four heated obstacles on the bottom surface is numerically investigated. The considered obstacles are constantly kept at a relatively high (fixed) temperature, while the cavity’s upper wall is cooled. The finite volume approach is used to solve the mass, momentum, and energy equations with the SIMPLEC algorithm being exploited to deal with the pressure-velocity coupling. Emphasis is put on the influence of the tilt angle on the solution symmetry, flow structure, and heat exchange through the

    More > Graphic Abstract

    Influence of the Inclination Angle on Mixed Convection and Heat Transfer in a “T” Shaped Double Enclosure

  • Open Access

    ARTICLE

    A Dynamic Plunger Lift Model for Shale Gas Wells

    Shiyu Miao1,2,3, Xiao Liu4, Xiaoya Feng6, Haowen Shi1,2,3, Wei Luo1,2,3,*, Peng Liu5

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1735-1751, 2023, DOI:10.32604/fdmp.2023.025681 - 08 March 2023

    Abstract At present, the optimization of the plunger mechanism is shale gas wells is mostly based on empirical methods, which lack a relevant rationale and often are not able to deal with the quick variations experienced by the production parameters of shale gas wells in comparison to conventional gas wells. In order to mitigate this issue, in the present work, a model is proposed to loosely couple the dynamics of gas inflow into shale gas wells with the dynamics of the liquid inflow. Starting from the flow law that accounts for the four stages of movement More > Graphic Abstract

    A Dynamic Plunger Lift Model for Shale Gas Wells

  • Open Access

    ARTICLE

    Performance Analysis of a Profile Control Agent for Waste Drilling Fluid Treatment

    Xueyu Zhao*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1897-1905, 2023, DOI:10.32604/fdmp.2023.025247 - 08 March 2023

    Abstract A method for the treatment of hazardous waste drilling fluids, potentially leading to environmental pollution, is considered. The waste drilling fluid is treated with an inorganic flocculant, an organic flocculant, and a pH regulator. The profile control agent consists of partially hydrolyzed polyacrylamide, formaldehyde, hexamethylenetetramine, resorcinol, phenol, and the treated waste drilling fluid itself. For a waste drilling fluid concentration of 2500 mg/L, the gelling time of the profile control agent is 25 h, and the gelling strength is 32,000 mPa.s. Compared with the profile control agent prepared by recirculated water under the same conditions, the present More >

  • Open Access

    ARTICLE

    A New Elastoplastic 3D Sand Production Model for Fractured Gas Fields

    Hongtao Liu, Hongtao Jing, Zhixiong Tu*, Shiyong Qin, Junhui Wei, Xiaotong Yu

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1851-1862, 2023, DOI:10.32604/fdmp.2023.025015 - 08 March 2023

    Abstract Reservoirs characterized by high temperature, high-pressure, medium high cementation strength, low porosity, and low permeability, in general, are not affected by sand production issues. Since 2009, however, it is known that cases exists where sand is present and may represent a significant technical problem (e.g., the the Dina II condensate gas field). In the present study, the main factors affecting sand production in this type of reservoir are considered (mechanical properties, stress fields, production system, completion method and gas flow pattern changes during the production process). On this basis, a new liquid-solid coupled porous elasto-plastic More >

  • Open Access

    ARTICLE

    An Analysis of the Static and Dynamic Behavior of the Hydraulic Compensation System of a Multichannel Valve

    Jikang Xu1,4, Ruichuan Li1,2,*, Yi Cheng2, Yanchao Li3, Junru Yang3, Chenyu Feng4, Xinkai Ding2, Huazhong Zhang5

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1817-1836, 2023, DOI:10.32604/fdmp.2023.022602 - 08 March 2023

    Abstract Electro-hydraulic proportional valve is the core control valve in many hydraulic systems used in agricultural and engineering machinery. To address the problem related to the large throttling losses and poor stability typically associated with these valves, here, the beneficial effects of a triangular groove structure on the related hydraulic response are studied. A mathematical model of the pressure compensation system based on the power-bond graph method is introduced, and the AMESim software is used to simulate its response. The results show that the triangular groove structure increases the jet angle and effectively compensates for the More > Graphic Abstract

    An Analysis of the Static and Dynamic Behavior of the Hydraulic Compensation System of a Multichannel Valve

Displaying 401-410 on page 41 of 1174. Per Page