Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (617)
  • Open Access

    ARTICLE

    Preparation of Kenaf Biochar and Its Adsorption Properties for Methylene Blue

    Xin Wan1,2,#, Zhigang Xia3,4,#, Xiaoli Yang1,2, Chenfeng Zhou2, Yuanming Zhang1,2, Haoxi Ben1,2, Guangting Han1,2, Wei Jiang1,2,*

    Journal of Renewable Materials, DOI:10.32604/jrm.2022.021102

    Abstract The toxic dyestuffs from printing and dyeing wastewater have caused serious damages to the ecological environment, thus exploring effective methods to remove them having become a key topic. Here, a series of biochar samples were synthesized form kenaf to adsorb methylene blue (MB), which was acted as the dye representative for the test of adsorption capacity due to the presence of abundant double bond and aromatic heterocyclic ring. By tuning the raw materials and pyrolysis temperature, a super adsorption capacity about 164.21 mg·g–1 was obtained over the biochar that pyrolyzed at 700°C with the kenaf fiber… More >

  • Open Access

    ARTICLE

    Physical and Mechanical Properties of Catalpa bungei Clones and Estimation of the Properties by Near-Infrared Spectroscopy

    Rui Wang, Lanlan Shi, Yurong Wang*

    Journal of Renewable Materials, DOI:10.32604/jrm.2022.020546

    Abstract Air-dry density, modulus of rupture (MOR), modulus of elasticity (MOE), compressive strength parallel to grain, and hardness of Catalpa bungei clones were investigated in this study with feasibility of predicting these properties by near-infrared (NIR) spectroscopy. The best candidate ‘Luoqiu 3’ has been selected from three clones based on wood physical and mechanical property indices. Lower values of wood physical and mechanical properties have been found in the corewood compared to the outerwood. There were significant positive correlations between the air-dry density and mechanical properties. Information from cross section for air-dry density, compressive strength parallel to More >

  • Open Access

    ARTICLE

    Research on Dynamic and Static Test Methods for Evaluating the Poisson’s Ratio of Oriented Strand Board

    Yuhao Zhou, Yuhang He, Zhaoyu Shen, Zheng Wang*

    Journal of Renewable Materials, DOI:10.32604/jrm.2022.021251

    Abstract In this article, dynamic method and static method of testing Poisson’s ratio of OSB (Oriented Strand Board) were proposed. Through modal and static numerical analyses, the position where the transverse stress is equal to zero was determined. The binary linear regression method was applied to express the gluing position of the strain gauge as a relational expression that depended on the length-width ratio and width-thickness ratio of the cantilever plate. Then the longitudinal and transverse Poisson’s ratios of OSB were measured by the given dynamic and static methods. In addition, the test results of OSB More >

  • Open Access

    ARTICLE

    Utilization of Bitter Orange Seed as a Novel Pectin Source: Compositional and Rheological Characterization

    Diako Khodaei1, Mohammad Nejatian2,*, Hassan Ahmadi Gavlighi2, Farhad Garavand3,*, Ilaria Cacciotti4

    Journal of Renewable Materials, DOI:10.32604/jrm.2022.021752

    Abstract The seeds from bitter orange, the by-product of juice making units, hold the potential to facilitate novel, easy yet high-quality pectin extraction. To test this hypothesis, orange seed pectin (OSP) was extracted by distilled water and its compositional parameters and rheological behavior were then evaluated. Results showed that galacturonic acid was the major component of OSP (∼425 mg/g) confirming the purity of the extracted pectin, followed by glucose and some minor neutral sugars. The Mw (weight-average molar mass), Rn (number average molar mass), and Rz (z-average molar mass) values for the OSP were 4511.8 kDa,… More >

  • Open Access

    ARTICLE

    Acoustics Performance Research and Analysis of Light Timber Construction Wall Elements Based on Helmholtz Metasurface

    Si Chen1, Yuhao Zhou1, Sarah Mohrmann2, Haiyan Fu1, Yuying Zou1, Zheng Wang1,*

    Journal of Renewable Materials, DOI:10.32604/jrm.2022.021531

    Abstract Based on the efficient sound absorption characteristics of Helmholtz resonance structures in the range of medium and low frequency acoustic waves, this paper investigates an effective solution for light timber construction walls with acoustic problems. This study takes the light timber construction wall structure as the research object. Based on the Helmholtz resonance principle, the structure design of the wall unit, impedance tube experiment and COMSOL MULTIPHYSICS simulation calculation were carried out to obtain the change rule of acoustic performance of the Helmholtz resonance wall unit structure. The research results show that the overall stability… More >

  • Open Access

    REVIEW

    Phytoremediation of Rare Tailings-Contaminated Soil

    Min Huang, Zhirong Liu*, Xiang Li

    Journal of Renewable Materials, DOI:10.32604/jrm.2022.022393

    Abstract In order to achieve the goal of circular economy and sustainable development of ecological environment, it is important to separate and recover associated elements from rare mineral resources. Compared with traditional physical and chemical remediation methods of contaminated soil, phytoremediation is regarded as the most promising green in-situ restoration technology. The purpose of this review is to effectively alleviate the environmental problems caused by rare tailings contaminated soil through phytoremediation and realize the recovery of uranium-thorium, rare earth elements (REEs) and tantalum-niobium. This review took rare tailings with uranium-thorium, REEs, tantalum-niobium in China as the… More >

  • Open Access

    ARTICLE

    Experimental Evaluation of Flexural Behavior of Stress Laminated Timber Decks

    Qingguo Ben1, Congcong Zhang2, Benkai Shi2, Huifeng Yang2,*

    Journal of Renewable Materials, DOI:10.32604/jrm.2022.022344

    Abstract Stress laminated timber (SLT) deck is assembled using timber (lumber or glulam) components placed side by side and stressed together, which has the advantages of easy prefabrication and good cost performance. This work presented an experimental investigation of bending tests performed on SLT slabs. Several parameters, including prestress levels, distance of pre-stressing bars, and the existence of self-tapping screw (STS) reinforcement, were taken into consideration. To reinforce the compressive property of timber perpendicular to the grain, the STSs were placed under the anchor plate of the pre-stressed bars. The experimental results were analyzed and discussed More >

  • Open Access

    ARTICLE

    Research on Printing Quality Evaluation of Decorative Paper Based on AHPEWM Model

    Huailin Li1,2, Chan Zhang1, Shisheng Zhou1,2,*, Bin Du1,2, Xue Li1

    Journal of Renewable Materials, DOI:10.32604/jrm.2022.021157

    Abstract Printing quality evaluation is an important means to check whether prints are qualified. However, the current printing quality evaluation system for gravure decorative paper is not perfect. In order to solve this problem, a method for evaluating quality of decorative paper based on analytical hierarchy process (AHP) and the entropy weight method (EWM) model is proposed in this paper. So as to verify the proposed model, decorative paper of different grades was selected as the experimental objects. Firstly, the data about five indices reflecting printing quality were measured. Secondly, the evaluation model was used to More >

  • Open Access

    ARTICLE

    Mechanical Properties and Evolution of Microstructure of Cement Stabilized Loess

    Kangze Yuan1, Kui Liu1,2,*, Guoyang Yi3, Bowen Yang2

    Journal of Renewable Materials, DOI:10.32604/jrm.2022.022458

    Abstract Cement Stabilized Loess (CSL) sample has a long history as a method of improving building foundations. In this paper, the main physical (specific gravity, consistency limit, optimum moisture content, and maximum dry density) and mechanical properties (Unconfined Compressive Strength (UCS) and shear strength parameters) of CSL samples with different cement content were investigated, and the change reasons were explored by mean of SEM test. Meanwhile, quantitative analysis software Image-Pro Plus (IPP) 6.0 was used to characterize the microstructural evolution of pores in compacted loess and CSL sample. As the cement content increased, the specific gravity… More >

  • Open Access

    ARTICLE

    Formation Mechanism of Biomass Aromatic Hydrocarbon Tar on Quantum Chemistry

    Bo Chen1, Bo Liu2,*, Yong Chao3, Chao Zhong1

    Journal of Renewable Materials, DOI:10.32604/jrm.2022.021302

    Abstract The formation process of aromatic hydrocarbon tar during the pyrolysis process of biomass components of cellulose and lignin was carried out by quantum chemical calculation based on density functional theory method B3LYP/6-31G++(d, p). 5-Hydroxymethylfurfural was chosen as the model compound of cellulose and hemicellulose, and syringaldehyde was chosen as the model compound of lignin. The calculation results show that the formation process of cellulose monocyclic aromatic hydrocarbon tar is the conversion process of benzene ring from furan ring, and the highest reaction energy barrier appears in the process of decarbonylation, which is 370.8 kJ/mol. The… More >

Displaying 411-420 on page 42 of 617. Per Page