Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    MAGNETO-CONVECTION OF ALUMINA - WATER NANOFLUID WITHIN THIN HORIZONTAL LAYERS USING THE REVISED GENERALIZED BUONGIORNO'S MODEL

    A.Wakifa,* , Z. Boulahiaa, A. Amineb , I.L. Animasaunc , M. I. Afridid, M. Qasimd , R. Sehaquia

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-15, 2019, DOI:10.5098/hmt.12.3

    Abstract The significance of an externally applied magnetic field and an imposed negative temperature gradient on the onset of natural convection in a thin horizontal layer of alumina-water nanofluid for various sizes of spherical alumina nanoparticles (e.g., 30 More >

  • Open Access

    ARTICLE

    LOW-ORDER MODEL OF THE DYNAMICS AND START-UP OF A PULSATING HEAT PIPE

    Felix Schilya,∗, Wolfgang Polifkea

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-15, 2021, DOI:10.5098/hmt.17.16

    Abstract A simple open-loop pulsating heat pipe model is proposed, which allows to analytically determine the start-up behavior by a linear stability analysis. Two distinct types of instability can occur in such a pulsating heat pipe: oscillatory and non-oscillatory. This paper demonstrates that for bubbles consisting of non-condensible gas, large temperature gradients along the wall are required to achieve start-up, whereas start-up is fairly easy to achieve when there is only a single working medium that forms bubbles from its vapor. The study also finds that surface tension as such only influences start-up indirectly, while contact angle hysteresis dampens out any… More >

Displaying 1-10 on page 1 of 2. Per Page