Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    THERMODYNAMIC ANALYSIS FOR THE MHD FLOW OF TWO IMMISCIBLE MICROPOLAR FLUIDS BETWEEN TWO PARALLEL PLATES

    J. Srinivas*, J. V. Ramana Murthy

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-11, 2015, DOI:10.5098/hmt.6.4

    Abstract The paper aims the heat transfer analysis for the flow of two immiscible micropolar fluids inside a horizontal channel, by the first and second laws of thermodynamics under the action of an imposed transverse magnetic field. The plates of the channel are maintained at constant temperatures higher than that of the fluid. The flow region consists of two zones, the flow of the heavier fluid taking place in the lower zone. The condition of hyper-stick is taken on the plates and continuity of velocity, micro-rotation, temperature, heat flux, shear stress and couple stress are imposed at the interface. The velocity,… More >

  • Open Access

    ARTICLE

    MHD MIXED CONVECTION FLOW OF A NON-NEWTONIAN POWELLERYING FLUID OVER A PERMEABLE EXPONENTIALLY SHRINKING SHEET

    Astick Banerjeea , Aurang Zaibb , Krishnendu Bhattacharyyac,* , S.K. Mahatod

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.30

    Abstract The magnetohydrodynamic (MHD) mixed convection heat transfer in a non-Newtonian Powell-Erying fluid flow due to an exponentially shrinking porous sheet is investigated. Both assisting and opposing flows are considered. After use of the suitable transformations, the governing equations become non-similar ODEs. Numerical computations of resulting equations are obtained by very efficient shooting method for several values of involved parameters. The results exhibit that dual non-similar solutions can be found only when some amount of fluid mass is sucked from the flow field through the porous sheet. Many important results on the effect of external magnetic field on mixed convective flow… More >

Displaying 1-10 on page 1 of 2. Per Page