Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    Identification and Characterization of ZF-HD Genes in Response to Abscisic Acid and Abiotic Stresses in Maize

    Xiaojie Jing1,2,3,#, Chunyan Li1,2,3,#, Chengjuan Luo1,2,3, Chaonan Yao1,2,3, Jiahao Zhang1,2,3, Tingting Zhu1,2,3, Jiuguang Wang1,2,3, Chaoxian Liu1,2,3,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 707-723, 2023, DOI:10.32604/phyton.2023.024338

    Abstract The zinc finger homeodomain (ZF-HD) genes belong to the homeobox gene family, playing critical roles in flower development and stress response. Despite their importance, however, to date there has been no genome-wide identification and characterization of the ZF-HD genes that are probably involved in stress responses in maize. In this study, 24 ZF-HD genes were identified, and their chromosomal locations, protein properties, duplication patterns, structures, conserved motifs and expression patterns were investigated. The results revealed that the ZF-HD genes are unevenly distributed on nine chromosomes and that most of these genes lack introns. Six and two ZF-HD genes have undergone… More >

  • Open Access

    REVIEW

    Distribution, Etiology, Molecular Genetics and Management Perspectives of Northern Corn Leaf Blight of Maize (Zea mays L.)

    M. Ashraf Ahangar1, Shabir Hussain Wani1,*, Zahoor A. Dar2, Jan Roohi1, Fayaz Mohiddin1, Monika Bansal3, Mukesh Choudhary4, Sumit K. Aggarwal4, S. A. Waza1, Khursheed Ahmad Dar5, Ayman El Sabagh6,7, Celaleddin Barutcular8, Omer Konuşkan9, Mohammad Anwar Hossain10,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.10, pp. 2111-2133, 2022, DOI:10.32604/phyton.2022.020721

    Abstract Maize is cultivated extensively throughout the world and has the highest production among cereals. However, Northern corn leaf blight (NCLB) disease caused by Exherohilum turcicum, is the most devastating limiting factor of maize production. The disease causes immense losses to corn yield if it develops prior or during the tasseling and silking stages of crop development. It has a worldwide distribution and its development is favoured by cool to moderate temperatures with high relative humidity. The prevalence of the disease has increased in recent years and new races of the pathogen have been reported worldwide. The fungus E. turcicum is… More >

  • Open Access

    ARTICLE

    Effects of Auxin at Different Concentrations on the Growth, Root Morphology and Cadmium Uptake of Maize (Zea mays L.)

    Lingyan Hu, Haiyan Chen, Guangqun Zhang, Zihao Yu, Kai Yan, Fangdong Zhan, Yongmei He*

    Phyton-International Journal of Experimental Botany, Vol.91, No.9, pp. 1933-1944, 2022, DOI:10.32604/phyton.2022.020041

    Abstract Indoleacetic acid (IAA) is an important regulator that plays a crucial role in plant growth and responses to abiotic stresses. In the present study, a sand cultivation experiment was carried out to investigate the effects of IAA at different concentrations (0, 0.01, 0.1, 0.5, 1, and 2.5 mmol/L) on maize growth, root morphology, mineral elements (Ca, Mg) and Cd uptake under 20 mg/kg Cd stress. The results showed that 0.01 mmol/L is the optimal IAA concentration for enhancing the Cd tolerance of maize. Compared with the control treatment, 0.01 mmol/L IAA promoted maize growth, with significant increases in the height,… More >

  • Open Access

    ARTICLE

    Development of a New Cold-Tolerant Maize (Zea mays L.) Germplasm Using the ICE1 Gene from Arabidopsis thaliana

    Jing Qu1, Shuang Liu2, Peng Jiao2, Zhenzhong Jiang2, Jianbo Fei2, Shuyan Guan1,*, Yiyong Ma1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.8, pp. 1709-1719, 2022, DOI:10.32604/phyton.2022.018854

    Abstract To develop cold-tolerant maize germplasms and identify the activation of INDUCER OF CRT/DRE-BINDING FACTOR EXPRESSION (ICE1) expression in response to cold stress, RT-PCR was used to amplify the complete open reading frame sequence of the ICE1 gene and construct the plant expression vector pCAMBIA3301-ICE1-Bar. Immature maize embryos and calli were transformed with the recombinant vector using Agrobacterium tumefaciens-mediated transformations. From the regenerated plantlets, three T1 lines were screened and identified by PCR. A Southern blot analysis showed that a single copy of the ICE1 gene was integrated into the maize (Zea mays L.) genomes of the three T1 generations. Under… More >

  • Open Access

    ARTICLE

    Discovering Candidate Chromosomal Regions Linked to Kernel Size-Related Traits via QTL Mapping and Bulked Sample Analysis in Maize

    Hameed Gul1, Mengya Qian1, Mohammad G. Arabzai1,2, Tianhui Huang1, Qiannan Ma1, Fangyu Xing1, Wan Cao1, Tingting Liu1, Hong Duan1, Qianlin Xiao1,*, Zhizhai Liu1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.7, pp. 1429-1443, 2022, DOI:10.32604/phyton.2022.019842

    Abstract Kernel size-related traits, including kernel length, kernel width, and kernel thickness, are critical components in determining yield and kernel quality in maize (Zea mays L.). Dissecting the phenotypic characteristics of these traits, and discovering the candidate chromosomal regions for these traits, are of potential importance for maize yield and quality improvement. In this study, a total of 139 F2:3 family lines derived from EHel and B73, a distinct line with extremely low ear height (EHel), was used for phenotyping and QTL mapping of three kernel size-related traits, including 10-kernel length (KL), 10-kernel width (KWid), and 10-kernel thickness (KT). The results… More >

  • Open Access

    ARTICLE

    Embryo and Endosperm Phytochemicals from Polyembryonic Maize Kernels and Their Relationship with Seed Germination

    J. David García-Ortíz1, Rebeca González-Centeno1, María Alejandra Torres-Tapia2, J. A. Ascacio-Valdés1, José Espinoza-Velázquez2, Raúl Rodríguez-Herrera1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.5, pp. 929-941, 2022, DOI:10.32604/phyton.2022.018368

    Abstract Because of the growing worldwide demand for maize grain, new alternatives have been sought for breeding of this cereal, e.g., development of polyembryonic varieties, which agronomic performance could positively impact the grain yield per unit area, and nutritional quality. The objectives of this study were to (1) determine the phytochemicals present in the embryo and endosperm of grain from maize families with high, low, and null polyembryony frequency, which were planted at different locations, and (2) state the relationship between these compounds and seed germination. The extracted phytochemicals from corn were identified by HPLC-MS. The results showed that the genotype… More >

  • Open Access

    ARTICLE

    Estimation of Growth and Photosynthetic Performance of Two C4 Species (Pennisetum spicatum (L.) Körn. and Zea mays L.) under a Low Temperature Treatment

    Abdulkhaliq Alshoaibi*

    Phyton-International Journal of Experimental Botany, Vol.91, No.1, pp. 45-55, 2022, DOI:10.32604/phyton.2022.016434

    Abstract Pearl millet (Pennisetum spicatum (L.) Körn.) and maize (Zea mays L.) are C4 grass species grown for feeding humans and animals in Almadinah Almunawwarah, which is in the western part of Saudi Arabia. During the winter, the mean temperature, which drops to 14°C, represents a major problem for the growth of these species in this region. Therefore, the objectives of this research were to investigate the growth response and the photosynthetic performance of P. spicatum and Z. mays under a low temperature stress. The treatments involved daytime and nighttime temperatures of 14/12°C (low temperature) and 24/22°C (optimum temperature). The results… More >

  • Open Access

    ARTICLE

    General and Exact Inbreeding Coefficient of Maize Synthetics Derived from Three-Way Line Hybrids

    Alejandro Ibarra-Sánchez, Juan Enrique Rodríguez-Pérez, Aureliano Peña-Lomelí, Clemente Villanueva-Verduzco, Jaime Sahagún-Castellanos*

    Phyton-International Journal of Experimental Botany, Vol.91, No.1, pp. 33-43, 2022, DOI:10.32604/phyton.2022.016136

    Abstract Synthetic varieties (SVs) are populations generated by randomly mating their parents. They are a good alternative for low-input farmers who grow onions, maize, and other allogamous crops since the seed produced by a SV does not change from one generation to the next. Although SV progenitors are commonly pure lines, in this case a synthetic (SynTC) whose parents are t three-way line crosses, a very common type of maize hybrid grown in Mexico, is studied. The aim was to develop a general and exact equation for the inbreeding coefficient of a SynTC SynTC because of its relationship with… More >

  • Open Access

    ARTICLE

    Epi-Brassinolide Positively Affects Chlorophyll Content and Dark-Reaction Enzymes of Maize Seedlings

    Yuanfen Gao, Tinglan Jiang, Yin Xiang, Xuewu He, Zhen Zhang, Shengjuan Wen, Junjie Zhang*

    Phyton-International Journal of Experimental Botany, Vol.90, No.5, pp. 1465-1476, 2021, DOI:10.32604/phyton.2021.014811

    Abstract Brassinosteroids participate in many physiological processes in plants; however, their regulatory roles on the activities of the enzymes involved in dark phase of photosynthesis remains elusive. In this study, detached leaves and protoplasts of maize seedlings were treated with epi-brassinolide (EBR) and brassinazole followed by the determination of the contents of chlorophyll (a+b) and soluble sugars, and the activity of dark reaction enzymes and the expression of the relevant genes. The results showed that chlorophyll (a+b) content increased by 7.4% under 0.1 μM EBR treatment for 48 h; furthermore, chlorophyll (a+b) content increased by 34% in detached leaves that were… More >

  • Open Access

    ARTICLE

    Cytogenetical Changes among Polyembryonic (PEm) and Non-PEm Maize Plants

    A. A. Román-Calzoncit1, F. Ramírez-Godina2,*, J. Sánchez-Laureano2, A. C. Flores-Gallegos1, J. Espinoza-Velázquez2, R. Rodríguez-Herrera1,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.1, pp. 87-97, 2021, DOI:10.32604/phyton.2020.013880

    Abstract Polyembryony in maize (PEm) contributes to improving the nutritional properties of the grain, as well as an increase in yield, since it generates multiple plants per seed, opening the possibility of developing new varieties. However, it is unknown whether polyembryony in maize is the product of chromosomal abnormalities. Based on the above, in this research a cytogenetic study was proposed to verify if chromosomal abnormalities are related to the maize polyembryony. For a meiotic study, maize genotypes with variable proportions of polyembryony (PEm), from the UA-IMM-BAP population and non-PEm (monoembryonic) maize were used, while for a mitosis analysis, 30 families… More >

Displaying 1-10 on page 1 of 27. Per Page