Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Villin Family Members Associated with Multiple Stress Responses in Cotton

    Fenni Lv1,2,#, Sen Wang3,#, Ruiping Tian1, Peng Wang2, Kang Liu1,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.6, pp. 1645-1660, 2021, DOI:10.32604/phyton.2021.016947

    Abstract Villin (VLN) is considered to be one of the most important actin-binding proteins, participates in modulating the actin cytoskeleton dynamics, plays essential role in plant development and resisting adverse environments. However, systematic studies of the VLN gene family have not been reported in cotton (Gossypium). In this study, 14 GhVLNs were identified in G. hirsutum. These GhVLN genes were distributed in 6 A-subgenome chromosomes and 6 D-subgenome chromosomes of the allotetraploid upland cotton and classified into three phylogenetical groups based on the classification model of AtVLNs. In addition, the 14 GhVLN genes have highly conserved gene structure and motif architecture.… More >

  • Open Access

    ARTICLE

    Characterization and Expression of Ammonium Transporter in Peach (Prunus persica) and Regulation Analysis in Response to External Ammonium Supply

    Meiling Tang1,2,#, Yuhe Li1,3,#, Yahui Chen1,4, Lei Han1,3, Hongxia Zhang1,3, Zhizhong Song1,3,4,*

    Phyton-International Journal of Experimental Botany, Vol.89, No.4, pp. 925-941, 2020, DOI:10.32604/phyton.2020.011184

    Abstract As the preferred nitrogen (N) source, ammonium (NH4+ ) contributes to plant growth and development and fruit quality. In plants, NH4+ uptake is facilitated by a family of NH4+ transporters (AMT). However, the molecular mechanisms and functional characteristics of the AMT genes in peach have not been mentioned yet. In this present study, excess NH4+ stress severely hindered shoot growth and root elongation, accompanied with reduced mineral accumulation, decreased leaf chlorophyll concentration, and stunned photosynthetic performance. In addition, we identified 14 putative AMT genes in peach (PpeAMT). Expression analysis showed that PpeAMT genes were differently expressed in peach leaves, stems… More >

Displaying 1-10 on page 1 of 2. Per Page