Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    HEAT EXCHANGES INTENSIFICATION THROUGH A FLAT PLAT SOLAR COLLECTOR BY USING NANOFLUIDS AS WORKING FLUID

    A. Maouassia,b,*, A. Baghidjaa,b, S. Douadc , N. Zeraibic

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-7, 2018, DOI:10.5098/hmt.10.35

    Abstract This paper illustrates how practical application of nanofluids as working fluid to enhance solar flat plate collector efficiency. A numerical investigation of laminar convective heat transfer flow throw a solar collector is conducted, by using CuO-water nanofluids. The effectiveness of these nanofluids is compared to conventional working fluid (water), wherein Reynolds number and nanoparticle volume concentration in the ranges of 25– 900 and 0–10 % respectively. The effects of Reynolds number and nanoparticles concentration on the skin-friction and heat transfer coefficients are presented and discussed later in this paper. Results show that the heat transfer increases with increasing both nanoparticles… More >

Displaying 1-10 on page 1 of 1. Per Page