Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    THERMAL PERFORMANCE ENHANCEMENT OF PARAFFIN WAX WITH AL2O3 AND CuO NANOPARTICLES – A NUMERICAL STUDY

    A. Valan Arasua,*, Agus P. Sasmitob,†, Arun S. Mujumdarb

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-7, 2011, DOI:10.5098/hmt.v2.4.3005

    Abstract The heat transfer enhancement of paraffin wax, a cheap and widely used latent heat thermal energy storage material, using nanoparticles is investigated. The effects of nanoparticle volume fraction on both the melting and solidification rates of paraffin wax are analysed and compared for Al2O3 and CuO nanoparticles. Present results show that dispersing nanoparticles in smaller volumetric fractions increase the heat transfer rate. The enhancement in thermal performance of paraffin wax is greater for Al2O3 compared with that for CuO nanoparticles. More >

  • Open Access

    ARTICLE

    PERFORMANCE EVALUATION OF A SOLAR WATER HEATER INTEGRATED WITH BUILT-IN THERMAL ENERGY STORAGE VIA POROUS MEDIA

    Hasan S. Majdia,*, Azher M. Abedb, Laith J. Habeebc

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-7, 2021, DOI:10.5098/hmt.17.6

    Abstract The present work presents and analyzes the results acquired from outdoor experimental measurements of a solar latent heat storage unit integrated with built-in thermal energy storage at the presence and absence of porous media. The tank consists of a porous media part, a packed of glass beds, and the fluid flowing through the void space surrounding the porous glass beds. The porous tanks were filled by 1.68 mm glass beds to form bed heights (h) of 10 and 20 cm. Results show that the maximum thermal storage of 110 min is achieved in hot flow rate qh=4 LPM, cold flow… More >

Displaying 1-10 on page 1 of 2. Per Page