Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Textile UWB 5G Antenna for Human Blood Clot Measurement

    K. Sugapriya*, S. Omkumar

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 803-818, 2023, DOI:10.32604/iasc.2023.032163

    Abstract The antenna plays an essential role in the medical industry. The short-range 5th Generation (5G) communication can be used for seamless transmission, reception, patient monitoring, sensing and measuring various processes at high speeds. A passive Ultra Wide Band (UWB) antenna, used as a sensor in the measurement of Prothrombin Time (PT) i.e., blood clot is being proposed. The investigated micro-strip patch UWB antenna operating in the frequency range of 3.1 to 10.6 GHz consists of a circular patch with a diamond-shaped slot made of jeans substrate material with good sensing properties is accomplished by adjusting the copper thickness of the… More >

  • Open Access

    ARTICLE

    5G Antenna Gain Enhancement Using a Novel Metasurface

    Mubashir Ashfaq1, Shahid Bashir1,*, Syed Imran Hussain Shah2, Nisar Ahmad Abbasi3, Hatem Rmili4,5, Muhammad Abbas Khan6

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3601-3611, 2022, DOI:10.32604/cmc.2022.025558

    Abstract This article presents a Sub-6 GHz microstrip patch antenna (MPA) with enhanced gain using metamaterial (MTM) superstrate. The source MPA operates at 4.8 GHz and has a peak gain of 5.3 dBi at the resonance frequency. A window-shaped unit cell is designed and investigated through the material wave propagation technique. The unit cell shows an Epsilon Near Zero (ENZ)-Mu Very Large (MVL) behavior around 4.8 GHz. The unit cell has a fourfold geometry which makes it a polarization independent metamaterial. A double layer antenna is designed by placing a 4 × 4 MTM slab as a superstrate above the MPA at a… More >

  • Open Access

    ARTICLE

    A Compact 28 GHz Millimeter Wave Antenna for Future Wireless Communication

    Shahid Khan1,2, Adil Bashir3, Haider Ali4, Abdul Rauf5, Mohamed Marey6,*, Hala Mostafa7, Ikram Syed8

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 301-314, 2022, DOI:10.32604/cmc.2022.023397

    Abstract This article presents a novel modified chuck wagon dinner bell shaped millimeter wave (mm-wave) antenna at 28 GHz. The proposed design has ultra-thin Rogers 5880 substrate with relative permittivity of 2.2. The design consists of T shaped resonating elements and two open ended side stubs. The desired 28 GHz frequency response is achieved by careful parametric modeling of the proposed structure. The maximum achieved single element gain at the desired resonance frequency is 3.45 dBi. The efficiency of the proposed design over the operating band is more than 88%. The impedance bandwidth achieved for −10 dB reference value is nearly… More >

  • Open Access

    ARTICLE

    Helix Inspired 28 GHz Broadband Antenna with End-Fire Radiation Pattern

    Hijab Zahra1, Wahaj Abbas Awan2, Niamat Hussain3,*, Syed Muzahir Abbas1,4, Subhas Mukhopadhyay1

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1935-1944, 2022, DOI:10.32604/cmc.2022.019495

    Abstract This paper presents the design and characterization of a via free planar single turn helix for 28 GHz broadband applications. The proposed antenna is designed using ROGERS RO4003 material, having a simple structure and end-fire radiation pattern. The antenna comprises of a compact dimension of 1.36 λ0 × 0.9 λ0 with a thickness of 0.0189 λ0 (where λ0 is the free-space wavelength at the central frequency of 28 GHz). Parametric study has been carried out to investigate the impact of key design parameters and to achieve an optimum design. Results show a good agreement between the simulated and measured results.… More >

Displaying 1-10 on page 1 of 4. Per Page