Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    ABAQUS and ANSYS Implementations of the Peridynamics-Based Finite Element Method (PeriFEM) for Brittle Fractures

    Fei Han*, Zhibin Li, Jianyu Zhang, Zhiying Liu, Chen Yao, Wenping Han

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2715-2740, 2023, DOI:10.32604/cmes.2023.026922

    Abstract In this study, we propose the first unified implementation strategy for peridynamics in commercial finite element method (FEM) software packages based on their application programming interface using the peridynamics-based finite element method (PeriFEM). Using ANSYS and ABAQUS as examples, we present the numerical results and implementation details of PeriFEM in commercial FEM software. PeriFEM is a reformulation of the traditional FEM for solving peridynamic equations numerically. It is considered that the non-local features of peridynamics yet possesses the same computational framework as the traditional FEM. Therefore, this implementation benefits from the consistent computational frameworks of both PeriFEM and the traditional… More >

  • Open Access

    ARTICLE

    Improved Staggered Algorithm for Phase-Field Brittle Fracture with the Local Arc-Length Method

    Zhijian Wu, Li Guo*, Jun Hong

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 611-636, 2023, DOI:10.32604/cmes.2022.020694

    Abstract The local arc-length method is employed to control the incremental loading procedure for phase-field brittle fracture modeling. An improved staggered algorithm with energy and damage iterative tolerance convergence criteria is developed based on the residuals of displacement and phase-field. The improved staggered solution scheme is implemented in the commercial software ABAQUS with user-defined element subroutines. The layered system of finite elements is utilized to solve the coupled elastic displacement and phase-field fracture problem. A one-element benchmark test compared with the analytical solution was conducted to validate the feasibility and accuracy of the developed method. Our study shows that the result… More >

  • Open Access

    ARTICLE

    Experimental Study on the Axial Compression Behavior of Short Columns of Steel-Fiber-Reinforced Recycled Aggregate Concrete

    Chunyang Liu1,2,*, Jia Xu1, Yifan Gu1, Ruofan Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1129-1142, 2021, DOI:10.32604/fdmp.2021.017376

    Abstract In order to study the axial compression performances of short columns made of recycled aggregate concrete, four samples were designed with different recycled aggregate replacement rates and carbon fibre reinforced plastics (CFRP) sheets. Then, monotonic loading was implemented to assess the variation trends of their axial compression properties. The ABAQUS finite element software was also used to determined the compression performances. Good agreement between experimental and numerical results has been found for the different parameters being considered. As shown by the results, recycled coarse aggregates result in improved ductility and better deformation performance of the specimens. The failure of specimens… More >

  • Open Access

    ARTICLE

    Simulation of Coupling Process of Flexible Needle Insertion into Soft Tissue Based on ABAQUS

    Linze Wang1, Dedong Gao1, *, Jiajie Fu1, Yuzhou Luo2, Shijian Zhao1

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 1153-1169, 2020, DOI:10.32604/cmc.2020.010073

    Abstract In order to get to the desired target inside the body, it is essential to investigate the needle-tissue coupling process and calculate the tissue deformation. A cantilever beam model is presented to predicting the deflection and bending angle of flexible needle by analyzing the distribution of the force on needle shaft during the procedure of needle insertion into soft tissue. Furthermore, a finite element (FE) coupling model is proposed to simulate the needle-tissue interactive process. The plane and spatial models are created to relate the needle and tissue nodes. Combined with the cantilever beam model and the finite element needle-tissue… More >

  • Open Access

    ARTICLE

    Constitutive Equations in Finite Element Codes: The INTERATOM Model in ABAQUS

    D.K. Anding1

    Structural Durability & Health Monitoring, Vol.1, No.2, pp. 95-106, 2005, DOI:10.3970/sdhm.2005.001.095

    Abstract The paper deals with the implementation of constitutive equations for isotropic viscoplastic material behaviour into modern Finite Element codes like ABAQUS. ABAQUS provides an user interface called UMAT (USER MATERIAL) for the definition of quite general material behaviour. The user can take advantage of the complete Finite Element code from ABAQUS and has to focus only on the solution of the constitutive equations. Key problems are accuracy and stability of this local solution procedure, which comes from the numerical stiffness of the governing equations (mostly first order ordinary differential equations). The numerical stiffness does not allow to use explicit integration… More >

  • Open Access

    ARTICLE

    Implementing the Node Based Smoothed Finite Element Method as User Element in Abaqus for Linear and Nonlinear Elasticity

    S. Kshrisagar1, A. Francis1, J. J. Yee2, S. Natarajan1, C. K. Lee3,*

    CMC-Computers, Materials & Continua, Vol.61, No.2, pp. 481-502, 2019, DOI:10.32604/cmc.2019.07967

    Abstract In this paper, the node based smoothed-strain Abaqus user element (UEL) in the framework of finite element method is introduced. The basic idea behind of the node based smoothed finite element (NSFEM) is that finite element cells are divided into subcells and subcells construct the smoothing domain associated with each node of a finite element cell [Liu, Dai and Nguyen-Thoi (2007)]. Therefore, the numerical integration is globally performed over smoothing domains. It is demonstrated that the proposed UEL retains all the advantages of the NSFEM, i.e., upper bound solution, overly soft stiffness and free from locking in compressible and nearly-incompressible… More >

  • Open Access

    ABSTRACT

    Numerical Simulation of Fluid-Structure Interaction of LNG Prestressed Storage Tank under Seismic Influence

    X.H. Du, X.P. Shen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.3, pp. 81-82, 2011, DOI:10.3970/icces.2011.016.081

    Abstract Aim of this paper is to simulate the fluid-structure interaction of liquefied natural gas (LNG) prestressed storage tank under seismic influence. The coupled Eulerian-Lagrangian (CEL) analysis technique is used to simulate the hydrodynamic interaction between LNG and the cylinder of LNG prestressed storage tank. The 3-D model of LNG has been dispersed by Eulerian mesh which is different from traditional added mass analysis method. Meanwhile, both of the 3-D models of prestressed rebar and concrete structure are dispersed by Lagrangian mesh. Following conclusions are obtained: 1) Natural frequency of the whole model has been obtained by using the Block Lanczos… More >

  • Open Access

    ARTICLE

    Numerical investigation of penetration in Ceramic/Aluminum targets using Smoothed particle hydrodynamics method and presenting a modified analytical model

    Ehsan Hedayati1, Mohammad Vahedi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.3, pp. 295-323, 2017, DOI:10.3970/cmes.2017.113.307

    Abstract Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets. In the present research, a modified model based on radius of ceramic cone was presented for ceramic/aluminum targets. In order to investigate and evaluate accuracy of the presented analytic model, obtained results were compared against the results of the Florence’s analytic model and also against numerical modeling results. The phenomenon of impact onto ceramic/aluminum composites were modeled using smoothed particle hydrodynamics (SPH) implemented utilizing ABAQUS Software. Results indicated that, with increasing initial velocity and ceramic thickness and decreasing support layer thickness, the… More >

  • Open Access

    ARTICLE

    Stability Analysis of Cross-channel Excavation for Existing Anchor Removal Project in Subway Construction

    Li Bin1,2,3, Fang Hongyuan1,2,3,*, He Wei4, Sun Bin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.1, pp. 57-69, 2017, DOI:10.3970/cmes.2017.113.054

    Abstract The cutter head will be stuck when the shield machine pass through the area existing anchor left by foundation construction of surrounding high-rise building. Subsurface excavation method is an efficient way to remove the existed anchor. In this paper, a three-dimensional finite element model is developed to study stability of cross-channel excavation. The time-spatial effects of arch crown settlement, intrados uplift and side wall horizontal convergence are analyzed according to different excavation size, lining thickness and lining order. The results show that the excavation size is the main factor to control the deformation of the surrounding soil, especially in arch… More >

  • Open Access

    ARTICLE

    Identification of Materials Properties with the Help of Miniature Shear Punch Test Using Finite Element Method and Neural Networks

    Asif Husain1, M. Guniganti2, D. K. Sehgal2, R. K. Pandey2

    CMC-Computers, Materials & Continua, Vol.8, No.3, pp. 133-150, 2008, DOI:10.3970/cmc.2008.008.133

    Abstract This paper describes an approach to identify the mechanical properties i.e. fracture and yield strength of steels. The study involves the FE simulation of shear punch test for various miniature specimens thickness ranging from 0.20mm to 0.80mm for four different steels using ABAQUS code. The experimental method of the miniature shear punch test is used to determine the material response under quasi-static loading. The load vs. displacement curves obtained from the FE simulation miniature disk specimens are compared with the experimental data obtained and found in good agreement. The resulting data from the load vs. displacement diagrams of different steels… More >

Displaying 1-10 on page 1 of 11. Per Page