Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (200)
  • Open Access

    ARTICLE

    Assessment of protein quantification methods in Tetranychus urticae, as a potential tool for resistance detection to pesticides

    Cerna1 E, Y Ochoa2, R Mendoza1, MH Badii3, G Gallegos1, J Landeros1

    Phyton-International Journal of Experimental Botany, Vol.79, pp. 147-152, 2010, DOI:10.32604/phyton.2010.79.147

    Abstract Protein assays were conducted on Tetranychus urticae Koch, as potential resistance detection tools to plaguicides. This is a phytophagous mite that feeds on a large variety of plants. Experiments were carried out using a pesticide susceptible and three field crop strains of T. urticae. Protein was measured by colorimetric assays, using Kit-II from Bio-Rad, with bovine serum albumin (BSA) as standard. Homogenates were prepared using 10, 30, 50, 100, 300, 500 and 800 mites, with 30 replicates each. Linearity was obtained for the standard curve of the different methods, and r2 values ranged from 0.877 to 0.985. The Bradford method… More >

  • Open Access

    ARTICLE

    Damage Detection of Cyclically Loaded Concrete Shear Wall using EMI Technique

    A. Likhith Reddy1, Shirleen Charles1, C. Bharathi Priya2, G.V. Rama Rao2, N. Gopalakrishnan3,4 , A. Rama Mohan Rao3

    Structural Durability & Health Monitoring, Vol.9, No.4, pp. 325-347, 2013, DOI:10.32604/sdhm.2013.009.325

    Abstract Details of the investigations on an unexplored application of Electro Mechanical Impedance (EMI) technique using smart piezoelectric (PZT) sensors for damage detection of concrete shear wall structures under crack opening and closing is presented in this paper. The behavior and the ability of this method to detect damages, in a heterogeneous quasi-brittle material is studied for its effective utilization in structural health monitoring. The paper discusses the experimental investigations conducted on a concrete shear wall using PZT patches. Conductance data is acquired at different applied lateral displacements of shear wall. Damage index is calculated using Root Mean Square Deviation (RMSD),… More >

  • Open Access

    ARTICLE

    Energy Absorption of Thin-walled Corrugated Crash Box in Axial Crushing

    H. Ghasemnejad1, H. Hadavinia1,2, D. Marchant1, A. Aboutorabi1

    Structural Durability & Health Monitoring, Vol.4, No.1, pp. 29-46, 2008, DOI:10.3970/sdhm.2008.004.029

    Abstract In this paper the crashworthiness capabilities of thin-walled corrugated crash boxes in axial crushing relative to flat sidewall boxes from the same material are investigated. In order to achieve this, various design of corrugated aluminium alloy 6060 temper T4 crash boxes were chosen and their axial crushing behaviour under impact loading was studied by developing a theoretical model based on Super Folding Element theory and by conducting finite element analysis using LS-DYNA in ANSYS. From the theoretical and FE analysis the crush force efficiency, the specific energy absorption and the frequency and amplitude of fluctuation of the dynamic crush force… More >

  • Open Access

    ARTICLE

    Modeling and Measurement of a Tunable Acoustoelastic System

    Deborah Fowler1, Garrett Lopp2, Dhiraj Bansal3, Ryan Schultz4, Matthew Brake5, Micah Shepherd6

    Sound & Vibration, Vol.52, No.3, pp. 12-17, 2018, DOI:10.32604/sv.2018.03864

    Abstract Acoustoelastic coupling occurs when a hollow structure’s in-vacuo mode aligns with an acoustic mode of the internal cavity. The impact of this coupling on the total dynamic response of the structure can be quite severe depending on the similarity of the modal frequencies and shapes. Typically, acoustoelastic coupling is not a design feature, but rather an unintended result that must be remedied as modal tests of structures are often used to correlate or validate finite element models of the uncoupled structure. Here, however, a test structure is intentionally designed such that multiple structural and acoustic modes are well-aligned, resulting in… More >

  • Open Access

    ARTICLE

    Heat Absorption and Joule Heating Effects on Transient Free Convective Reactive Micropolar Fluid Flow Past a Vertical Porous Plate

    MD. Shamshuddin1, *, C. Balarama Krishna2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.3, pp. 207-231, 2019, DOI:10.32604/fdmp.2019.00449

    Abstract Mathematical model for an unsteady, incompressible, electrically conducting micropolar fluid past a vertical plate through porous medium with constant plate velocity has been investigated in the present study. Heat absorption, Joulian dissipation, and firstorder chemical reaction is also considered. Under the assumption of low Reynolds number, the governing transport equations are rendered into non-dimensional form and the transformed first order differential equations are solved by employing an efficient finite element method. Influence of various flow parameters on linear velocity, microrotation velocity, temperature, and concentration are presented graphically. The effects of heat absorption and chemical reaction rate decelerate the flow is… More >

  • Open Access

    ARTICLE

    A New Interface Identification Technique Based on Absolute Density Gradient for Violent Flows

    Yan Zhou1, Qingwei Ma*

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.2, pp. 131-147, 2018, DOI: 10.3970/cmes.2018.00249

    Abstract An identification technique for sharp interface and penetrated isolated particles is developed for simulating two-dimensional, incompressible and immiscible two-phase flows using meshless particle methods in this paper. This technique is based on the numerically computed density gradient of fluid particles and is suitable for capturing large interface deformation and even topological changes such as merging and breaking up of phases. A number of assumed particle configurations will be examined using the technique, including these with different level of randomness of particle distribution. The tests will show that the new technique can correctly identify almost all the interface and isolated particles,… More >

  • Open Access

    ABSTRACT

    Meta-model based Design Optimization of Two-stage Shock Absorption System for Lunar Lander

    Min Hwan Oh, Hee Jun Lee, Minho Chung, Jin Yeon Cho, Do Soon Hwang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.3, pp. 93-94, 2011, DOI:10.3970/icces.2011.020.093

    Abstract Lunar lander may experience various impact loadings when it makes a landing on the lunar surface. Due to the reason, shock absorption system of lunar lander should be designed to absorb the landing energy of lunar lander efficiently for a successful lunar mission. Shock absorption system should be reliable, and the entire landing energy should be absorbed into the shock absorption system to prevent a critical bouncing or turn-over. One the other hand, to protect the payloads, excessive deceleration should be avoided while absorbing the landing energy.

    To design an efficient shock absorption system of lunar lander, which satisfies… More >

  • Open Access

    ABSTRACT

    Nuclear Magnetic Resonance Spectrum Experiment of Gas Absorption and Desorption in Coal under Tridimensional Load and Unload

    J.P. Tang*, Y.S. Pan

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.4, pp. 107-108, 2011, DOI:10.3970/icces.2011.016.107

    Abstract Nuclear Magnetic Resonance (NMR) as an advanced non-damaged measurement technique was introduced into the research of gas adsorption and desorption in coal to simulate physically and evaluate influence of tridimensional load and unload . Coal is typical heterogeneous material which can adsorb gas. Load and unload condition play important roles for gas storage and transport in coal. Gas in coal has two states, free and absorbed which act balance dynamically. The home-made triaxial osmoscope made up of non-magnetic polycarbonate material which has coal sample were placed into the magnetic bore of NMR spectrum equipment. The NMR spectrum experiments of coal… More >

  • Open Access

    ABSTRACT

    Study on Dynamic Energy Absorption Ability of Closed-cell Si-Al Foam Metals Considering Geometry Size

    Yishan Pan, Xiangfeng Lv, Zhonghua Li, XiChun Xiao

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.4, pp. 101-102, 2011, DOI:10.3970/icces.2011.016.101

    Abstract Geometry size has a great influence on energy absorption ability of closed-cell foam metals. Study on energy absorption ability of closed-cell Si-Al foam metals considering geometry size by impact experiment method. The results show that the strain and absorbing energy value are decreasing with the geometry size increasing, and also lead to the hole wall rupture or whole instability. The best height-width ratio for cube and cylinder are 1.0~1.5 and 1.0~2.0, respectively. With the increasing of material diameter, the compressive strength increasing quickly, but the strain reduces. It is clearly that height-width ratio 1.0 is better for cube and cylinder. More >

  • Open Access

    ABSTRACT

    Wave propagation in the presence of empty cracks in elastic slabs -- TBEM and MFS Formulations

    A. Tadeu1, L. Godinho1, J. António1, P. Amado Mendes1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.3, pp. 163-168, 2007, DOI:10.3970/icces.2007.003.163

    Abstract This paper evaluates the 3D wave propagation in an elastic slab containing cracks whose geometry does not change along the direction parallel to the formation surfaces. Two different formulations are used and compared: the Traction Boundary Element Method (TBEM) and the Method of Fundamental Solutions (MFS). Both approaches are developed in the frequency domain and surmount the thin-body difficulty posed by the classical Boundary Element Method (BEM). The TBEM models the crack as a single line. The resulting hypersingular integrals are evaluated analytically. For the MFS, the solution is approximated in terms of a linear combination of fundamental solutions, generated… More >

Displaying 161-170 on page 17 of 200. Per Page