Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (158)
  • Open Access

    ARTICLE

    Evaluation of Grid-Connected Photovoltaic Plants Based on Clustering Methods

    Amr A. Munshi*

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2837-2852, 2023, DOI:10.32604/csse.2023.033168

    Abstract Photovoltaic (PV) systems are electric power systems designed to supply usable solar power by means of photovoltaics, which is the conversion of light into electricity using semiconducting materials. PV systems have gained much attention and are a very attractive energy resource nowadays. The substantial advantage of PV systems is the usage of the most abundant and free energy from the sun. PV systems play an important role in reducing feeder losses, improving voltage profiles and providing ancillary services to local loads. However, large PV grid-connected systems may have a destructive impact on the stability of the electric grid. This is… More >

  • Open Access

    ARTICLE

    Selective Harmonics Elimination Technique for Artificial Bee Colony Implementation

    T. DeepikaVinothini1,*, R. Karthigaivel2, J. BarsanaBanu3

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2721-2740, 2023, DOI:10.32604/csse.2023.028662

    Abstract In this research, an Artificial Bee Colony (ABC) algorithm based Selective Harmonics Elimination (SHE) technique is used as a pulse generator in a reduced switch fifteen level inverter that receives input from a PV system. Pulse width modulation based on Selective Harmonics Elimination is mostly used to suppress lower-order harmonics. A high gain DC-DC-SEPIC converter keeps the photovoltaic (PV) panel’s output voltage constant. The Grey Wolf Optimization (GWO) filter removes far more Photovoltaic panel energy from the sunlight frame. To eliminate voltage harmonics, this unique inverter architecture employs a multi-carrier duty cycle, a high-frequency modulation approach. The proposed ABC harmonics… More >

  • Open Access

    ARTICLE

    Photovoltaic Cell Panels Soiling Inspection Using Principal Component Thermal Image Processing

    A. Sriram1,*, T. D. Sudhakar2

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2761-2772, 2023, DOI:10.32604/csse.2023.028559

    Abstract Intended for good productivity and perfect operation of the solar power grid a failure-free system is required. Therefore, thermal image processing with the thermal camera is the latest non-invasive (without manual contact) type fault identification technique which may give good precision in all aspects. The soiling issue, which is major productivity affecting factor may import from several reasons such as dust on the wind, bird mucks, etc. The efficient power production sufferers due to accumulated soil deposits reaching from 1%–7% in the county, such as India, to more than 25% in middle-east countries country, such as Dubai, Kuwait, etc. This… More >

  • Open Access

    REVIEW

    A Survey of the Researches on Grid-Connected Solar Power Generation Systems and Power Forecasting Methods Based on Ground-Based Cloud Atlas

    Xing Deng1,2, Feipeng Da1,*, Haijian Shao2, Xia Wang3

    Energy Engineering, Vol.120, No.2, pp. 385-408, 2023, DOI:10.32604/ee.2023.023480

    Abstract Photovoltaic power generating is one of the primary methods of utilizing solar energy resources, with large-scale photovoltaic grid-connected power generation being the most efficient way to fully utilize solar energy. In order to provide reference strategies for pertinent researchers as well as potential implementation, this paper tries to provide a survey investigation and technical analysis of machine learning-related approaches, statistical approaches and optimization techniques for solar power generation and forecasting. Deep learning-related methods, in particular, can theoretically handle arbitrary nonlinear transformations through proper model structural design, such as hidden layer topology optimization and objective function analysis to save information that… More > Graphic Abstract

    A Survey of the Researches on Grid-Connected Solar Power Generation Systems and Power Forecasting Methods Based on Ground-Based Cloud Atlas

  • Open Access

    ARTICLE

    Energy Loss Analysis of Distributed Rooftop Photovoltaics in Industrial Parks

    Yu Xiao1,2, Kai Li1,2, Hongqiao Huang1,2, Haibo Tan1,2, Hua Li3,*

    Energy Engineering, Vol.120, No.2, pp. 511-527, 2023, DOI:10.32604/ee.2023.022750

    Abstract The analysis of the loss of distributed photovoltaic power generation systems involves the interests of energy users, energy-saving service companies, and power grid companies, so it has always been the focus of the industry and society in some manner or another. However, the related analysis for an actual case that considers different cooperative corporations’ benefits is lacking in the presently available literature. This paper takes the distributed rooftop photovoltaic power generation project in an industrial park as the object, studies the analysis and calculation methods of line loss and transformer loss, analyzes the change of transformer loss under different temperatures… More >

  • Open Access

    ARTICLE

    Energy Management and Capacity Optimization of Photovoltaic, Energy Storage System, Flexible Building Power System Considering Combined Benefit

    Chang Liu1, Bo Luo1, Wei Wang1, Hongyuan Gao1, Zhixun Wang2, Hongfa Ding3,*, Mengqi Yu4, Yongquan Peng5

    Energy Engineering, Vol.120, No.2, pp. 541-559, 2023, DOI:10.32604/ee.2022.022610

    Abstract Building structures themselves are one of the key areas of urban energy consumption, therefore, are a major source of greenhouse gas emissions. With this understood, the carbon trading market is gradually expanding to the building sector to control greenhouse gas emissions. Hence, to balance the interests of the environment and the building users, this paper proposes an optimal operation scheme for the photovoltaic, energy storage system, and flexible building power system (PEFB), considering the combined benefit of building. Based on the model of conventional photovoltaic (PV) and energy storage system (ESS), the mathematical optimization model of the system is proposed… More >

  • Open Access

    ARTICLE

    Intelligent Systems and Photovoltaic Cells Empowered Topologically by Sudoku Networks

    Khalid Hamid1, Muhammad Waseem Iqbal2, M. Usman Ashraf3, Akber Abid Gardezi4, Shafiq Ahmad5, Mejdal Alqahtani5, Muhammad Shafiq6,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4221-4238, 2023, DOI:10.32604/cmc.2023.034320

    Abstract A graph invariant is a number that can be easily and uniquely calculated through a graph. Recently, part of mathematical graph invariants has been portrayed and utilized for relationship examination. Nevertheless, no reliable appraisal has been embraced to pick, how much these invariants are associated with a network graph in interconnection networks of various fields of computer science, physics, and chemistry. In this paper, the study talks about sudoku networks will be networks of fractal nature having some applications in computer science like sudoku puzzle game, intelligent systems, Local area network (LAN) development and parallel processors interconnections, music composition creation,… More >

  • Open Access

    ARTICLE

    Towards a Unified Single Analysis Framework Embedded with Multiple Spatial and Time Discretized Methods for Linear Structural Dynamics

    David Tae, Kumar K. Tamma*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 843-885, 2023, DOI:10.32604/cmes.2023.023071

    Abstract We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method, particle methods, and other spatial methods on a single body sub-divided into multiple subdomains. This is in conjunction with implementing the well known Generalized Single Step Single Solve (GS4) family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework. In the current state of technology, the coupling of altogether different… More >

  • Open Access

    ARTICLE

    Nonlinear Algebraic Equations Solved by an Optimal Splitting-Linearizing Iterative Method

    Chein-Shan Liu1, Essam R. El-Zahar2,3, Yung-Wei Chen4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1111-1130, 2023, DOI:10.32604/cmes.2022.021655

    Abstract How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations (NAEs). This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms. We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system. Through the maximal orthogonal projection concept, to minimize a merit function within a selected interval of splitting parameters, the optimal parameters can be quickly determined.… More > Graphic Abstract

    Nonlinear Algebraic Equations Solved by an Optimal Splitting-Linearizing Iterative Method

  • Open Access

    ARTICLE

    Algebraic Properties for Molecular Structure of Magnesium Iodide

    Ali N. A. Koam1, Ali Ahmad2,*, Muhammad Azeem3, Muhammad Kamran Siddiqui4

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1131-1146, 2023, DOI:10.32604/cmes.2022.020884

    Abstract As an inorganic chemical, magnesium iodide has a significant crystalline structure. It is a complex and multi-functional substance that has the potential to be used in a wide range of medical advancements. Molecular graph theory, on the other hand, provides a sufficient and cost-effective method of investigating chemical structures and networks. M-polynomial is a relatively new method for studying chemical networks and structures in molecular graph theory. It displays numerical descriptors in algebraic form and highlights molecular features in the form of a polynomial function. We present a polynomials display of magnesium iodide structure and calculate several M-polynomials in this… More >

Displaying 41-50 on page 5 of 158. Per Page