Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    A mapping method for shock waves using ALE formulation

    Souli, M.1, Aquelet, N.2, Al-Bahkali, E.3, Moatamedi, M.4

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.2, pp. 119-133, 2013, DOI:10.3970/cmes.2013.091.119

    Abstract To simulate accurately a pressure wave propagation problem, a fine mesh is required in order to capture peak pressures accurately. This may require a very large size problem with several millions of elements. To reduce CPU time and prevent high mesh distortion, a two-dimensional problem for blast ignition and pressure propagation is performed first on a fixed Eulerian mesh. When the pressure wave gets closer to the structure, a three dimensional ALE simulation follows, where the fluid mesh and structure mesh at the fluid structure interface are coincident. The three dimensional problem is performed after… More >

  • Open Access


    Fluid Structure Interaction for Bird Impact Problem: Experimental and Numerical Investigation

    Souli, M.1, Gabrys, J.2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.2, pp. 177-192, 2012, DOI:10.3970/cmes.2012.085.177

    Abstract Bird impacts on aircraft are very common and cause significant safety threats to commercial and military aircraft. According to FAA ( Federal American Aviation) regulations, aircraft should be able to land safely following specified types of bird impact on components such as radomes, windshields, engines leading edge structures and other exposed components. Thus exposed components are required to be certified for bird impact. In order to evaluate whether the aircraft is compliant to FAA requirements, several experimental tests and numerical simulations of bird impact on components need to be preformed. This paper presents an experimental More >

Displaying 1-10 on page 1 of 2. Per Page