Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Numerical Study on Mechanism of Blast-Induced Damage Considering Guiding Effect of Water Jet Slot

    Dengfeng Su1, Zizheng Jia1,*, Qiang Zhu1, Zhengguo Li1, Banghong Chen1, Dandan Zheng2

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 209-224, 2023, DOI:10.32604/sdhm.2022.021257

    Abstract Damage is one of the most important characteristics of rock failure. Studying the damage mechanism of rock blasting under the guiding effect of the water jet slot and revealing the mechanism of controlled blasting with water jet assistance are crucial. In this study, a rock-like material was chosen as the research object for the calibration experiment of the numerical model. The numerical simulation models were then established by ANSYS/LS-DYNA, and the blast-induced damage mechanism under the guiding effect of the water jet slot was analyzed according to the blasting theory. The results indicated that explosive energy accumulates toward the direction… More > Graphic Abstract

    Numerical Study on Mechanism of Blast-Induced Damage Considering Guiding Effect of Water Jet Slot

  • Open Access

    ARTICLE

    STUDY OF THERMAL AND MECHANICAL PROPERTIES OF FIBERGLASS MULTI-WALL CARBON NANOTUBE/EPOXY

    Luay Hashem Abbuda,b,*, Hyder H. Ballac, Ammar F. Abdulwahidd , Zaid Sttar Karimd

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.30

    Abstract This project aims at determining both numerical and experimental to some thermal properties and its thermal expansion coefficient, thermal conductivity and mechanical properties of reinforcement of fiber glass woven with matrix of multi wall carbon nanotube MWCNT / epoxy composite. First, this powder is known to have a very good thermal properties. So, the nanopartical combined with resin has poor thermal properties. Secondly, the development a complete solution for the manufacturing of multi wall carbon nanotube /epoxy composites different volume fraction from 1% to 10% with increment of 2% to compare the result of finite element method by using ANSYS… More >

  • Open Access

    ARTICLE

    A COMPARISON OF THE EQUILIBRIUM AND THE DROPLETS BASED NON-EQUILIBRIUM COMPRESSIBLE PHASE CHANGE SOLVERS FOR CONDENSATION OF CARBON DIOXIDE INSIDE NOZZLES

    Kapil Dev Choudhary, Shyam Sunder Yadav , Mani Sankar Dasgupta

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-10, 2021, DOI:10.5098/hmt.16.14

    Abstract In the current work, we simulate the condensation of supercritical CO2 during its high speed flow inside two different converging-diverging nozzles. We use the homogeneous equilibrium method and the classical nucleation theory based non-equilibrium phase change model for this purpose. The simulation results indicate significant influence of the nozzle inlet condition, nozzle shape and the fluid thermophysical behaviour on the nonequilibrium conditions prevailing inside the nozzles. We observe very low, ∼0.15 K, supercooling for the flow of CO2 inside the Claudio Lettieri nozzle compared to the supercooling of ∼3 K observed for the Berana nozzle. Very high nucleation rate (∼… More >

  • Open Access

    ARTICLE

    ABAQUS and ANSYS Implementations of the Peridynamics-Based Finite Element Method (PeriFEM) for Brittle Fractures

    Fei Han*, Zhibin Li, Jianyu Zhang, Zhiying Liu, Chen Yao, Wenping Han

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2715-2740, 2023, DOI:10.32604/cmes.2023.026922

    Abstract In this study, we propose the first unified implementation strategy for peridynamics in commercial finite element method (FEM) software packages based on their application programming interface using the peridynamics-based finite element method (PeriFEM). Using ANSYS and ABAQUS as examples, we present the numerical results and implementation details of PeriFEM in commercial FEM software. PeriFEM is a reformulation of the traditional FEM for solving peridynamic equations numerically. It is considered that the non-local features of peridynamics yet possesses the same computational framework as the traditional FEM. Therefore, this implementation benefits from the consistent computational frameworks of both PeriFEM and the traditional… More >

  • Open Access

    ARTICLE

    An Integrated Oil Production Enhancement Technology Based on Waterflooding Energy Recovery

    Aleksandr Lekomtsev1,*, Vitaliy Bakaneev1, Ivan Stepanenko1, Petr Maximov1, Yulia Rozhkova1, Alexey Dengaev2, Wanli Kang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 285-301, 2023, DOI:10.32604/fdmp.2022.019809

    Abstract A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed. After providing an extensive review of the existing scientific and technical literature on this subject, the proposed integrated technology is described together with the related process flow diagram, the criteria used to select a target facility for its implementation and the outcomes of the laboratory studies conducted to analyze emulsion formation and separation kinetics. Moreover, the outcomes of numerical simulations performed using Ansys CFX software are also presented. According to these results, using the proposed approach the incremental oil production may reach 1.2 t/day (with a 13%… More >

  • Open Access

    ARTICLE

    The Effect of Swirl Intensity on the Flow Behavior and Combustion Characteristics of a Lean Propane-Air Flame

    Hemaizia Abdelkader*, Bentebbiche Abdelhalim

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1749-1762, 2022, DOI:10.32604/fdmp.2022.022006

    Abstract The effect of swirl number (Sn) on the flow behavior and combustion characteristics of a lean premixed propane Flame Ф = 0.5 in a swirl burner configuration was numerically verified in this study. Two-dimensional numerical simulations were performed using ANSYS-Fluent software. For turbulence closure, a standard K-ε turbulence model was applied. The turbulence-chemistry interaction scheme was modeled using the Finite Rate-Eddy Dissipation hybrid model (FR/EDM) with a reduced three-step reaction mechanism. The P1 radiation model was used for the flame radiation inside the combustion chamber. Four different swirl numbers were selected (0, 0.72, 1.05, and 1.4) corresponding to different angles… More >

  • Open Access

    ARTICLE

    Minimizing Buoyancy Factor of Metallic Pressure-Hull Subjected to Hydrostatic Pressure

    Mahmoud Helal1,2, Elsayed Fathallah3,4, Abdulaziz H Alghtani1, Hussein Shawki Osman5, Jong Wan Hu6,7,*, Hasan Eleashy8

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 769-793, 2023, DOI:10.32604/iasc.2023.025618

    Abstract To increase the payload, reduce energy consumption, improve work efficiency and therefore must accordingly reduce the total hull weight of the submersible. This paper introduces a design optimization process for the pressure-hull of submarines under uniform external hydrostatic pressure using both finite element analysis (FEA) and optimization tools. A comprehensive study about the optimum design of the pressure hull, to minimize the weight and increase the volume, to reach minimum buoyancy factor and maximum operating depth minimizing the buoyancy factor (B.F) is taken as an objective function with constraints of plate and frame yielding, general instability and deflection. The optimization… More >

  • Open Access

    ARTICLE

    On the Selection of a Composite Material for Two-Wheeler Foot Bracket Failure Prevention through Simulation and Mathematical Modeling

    S. M. Sivagami1, A. Bovas Herbert Bejaxhin2,*, R. Gayathri1, T. Raja Vijay1, K. Punitharani3, P. Keerthi Vasan1, M. Meignanamoorthy4

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 521-536, 2022, DOI:10.32604/fdmp.2022.018752

    Abstract A foot bracket is a metal panel bracket used to mount and support the footrest in two-wheeler systems. It holds the footrest in place while rigidly supporting it. In working conditions, this element has often been observed to fail when specific load-fluctuation conditions are established at its rear end. Appropriate materials therefore need to be identified to overcome such a recurring failure. To address these issues, the present study has been implemented with the specific objective to determine the response of selected Al6061-T6 and Al7075-T6 Hybrid Metal Matrix Composites (HMMC). The results, obtained using the ANSYS Software, show that the… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Assessment on Seismic Performance of Earth Adobe Walls

    Zele Li1, Mohammad Noori2, Wael A. Altabey1,3,*

    Structural Durability & Health Monitoring, Vol.15, No.2, pp. 103-123, 2021, DOI:10.32604/sdhm.2021.011193

    Abstract Earth buildings are common types of structures in most rural areas in all developing countries. Catastrophic failure and destruction of these structures under seismic loads always result in loss of human lives and economic losses. Wall is an important load-bearing component of raw soil buildings. In this paper, a novel approach is proposed to improve the strength and ductility of adobe walls. Three types of analyses, material properties, mechanical properties, and dynamic properties, are carried out for the seismic performance assessment of the adobe walls. These performed studies include that, material properties of the earth cylinder block, mechanical properties of… More >

  • Open Access

    ARTICLE

    Computational Fluid Dynamics Simulation of Indoor Air Quality and Thermal Stratification of an Underfloor Air Distribution System (UFAD) with Various Vent Layouts

    Neil Stephen Lopez1,*, Selena Kay Galeos1, Brian Raphael Calderon1, David Roy Dominguez1, Bryan Joseph Uy1, Rupesh Iyengar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 333-347, 2021, DOI:10.32604/fdmp.2021.011213

    Abstract The underfloor air distribution (UFAD) system has not been able to penetrate the residential and commercial air conditioning industry significantly until now. To date, the most notable applications are found in datacenters because of their more demanding thermal stratification and cooling requirements. In addition to highlighting the advantages of the UFAD system over the traditional overhead (OH) system, this study compares various ventilation layouts for a UFAD system. Four different UFAD ventilation layouts are compared and one OH layout. The results show that using multiple swirl-type diffusers creates a more uniform floor-to-knee temperature and less air recirculation than the rectangular… More >

Displaying 1-10 on page 1 of 12. Per Page