Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    HRNetO: Human Action Recognition Using Unified Deep Features Optimization Framework

    Tehseen Ahsan1,*, Sohail Khalid1, Shaheryar Najam1, Muhammad Attique Khan2, Ye Jin Kim3, Byoungchol Chang4

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1089-1105, 2023, DOI:10.32604/cmc.2023.034563 - 06 February 2023

    Abstract Human action recognition (HAR) attempts to understand a subject’s behavior and assign a label to each action performed. It is more appealing because it has a wide range of applications in computer vision, such as video surveillance and smart cities. Many attempts have been made in the literature to develop an effective and robust framework for HAR. Still, the process remains difficult and may result in reduced accuracy due to several challenges, such as similarity among actions, extraction of essential features, and reduction of irrelevant features. In this work, we proposed an end-to-end framework using… More >

  • Open Access

    ARTICLE

    Two-Stream Deep Learning Architecture-Based Human Action Recognition

    Faheem Shehzad1, Muhammad Attique Khan2, Muhammad Asfand E. Yar3, Muhammad Sharif1, Majed Alhaisoni4, Usman Tariq5, Arnab Majumdar6, Orawit Thinnukool7,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5931-5949, 2023, DOI:10.32604/cmc.2023.028743 - 28 December 2022

    Abstract Human action recognition (HAR) based on Artificial intelligence reasoning is the most important research area in computer vision. Big breakthroughs in this field have been observed in the last few years; additionally, the interest in research in this field is evolving, such as understanding of actions and scenes, studying human joints, and human posture recognition. Many HAR techniques are introduced in the literature. Nonetheless, the challenge of redundant and irrelevant features reduces recognition accuracy. They also faced a few other challenges, such as differing perspectives, environmental conditions, and temporal variations, among others. In this work,… More >

  • Open Access

    ARTICLE

    Feature Fusion-Based Deep Learning Network to Recognize Table Tennis Actions

    Chih-Ta Yen1,*, Tz-Yun Chen2, Un-Hung Chen3, Guo-Chang Wang3, Zong-Xian Chen3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 83-99, 2023, DOI:10.32604/cmc.2023.032739 - 22 September 2022

    Abstract A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study. The wearable device consisted of a six-axis sensor, Raspberry Pi 3, and a power bank. Multiple kernel sizes were used in convolutional neural network (CNN) to evaluate their performance for extracting features. Moreover, a multiscale CNN with two kernel sizes was used to perform feature fusion at different scales in a concatenated manner. The CNN achieved recognition of the four table tennis strokes. Experimental data were obtained from 20 research participants who wore sensors More >

  • Open Access

    ARTICLE

    Using BlazePose on Spatial Temporal Graph Convolutional Networks for Action Recognition

    Motasem S. Alsawadi1,*, El-Sayed M. El-kenawy2,3, Miguel Rio1

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 19-36, 2023, DOI:10.32604/cmc.2023.032499 - 22 September 2022

    Abstract The ever-growing available visual data (i.e., uploaded videos and pictures by internet users) has attracted the research community's attention in the computer vision field. Therefore, finding efficient solutions to extract knowledge from these sources is imperative. Recently, the BlazePose system has been released for skeleton extraction from images oriented to mobile devices. With this skeleton graph representation in place, a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action. We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of More >

  • Open Access

    ARTICLE

    Motion Enhanced Model Based on High-Level Spatial Features

    Yang Wu1, Lei Guo1, Xiaodong Dai1, Bin Zhang1, Dong-Won Park2, Ming Ma1,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5911-5924, 2022, DOI:10.32604/cmc.2022.031664 - 28 July 2022

    Abstract Action recognition has become a current research hotspot in computer vision. Compared to other deep learning methods, Two-stream convolutional network structure achieves better performance in action recognition, which divides the network into spatial and temporal streams, using video frame images as well as dense optical streams in the network, respectively, to obtain the category labels. However, the two-stream network has some drawbacks, i.e., using dense optical flow as the input of the temporal stream, which is computationally expensive and extremely time-consuming for the current extraction algorithm and cannot meet the requirements of real-time tasks. In… More >

  • Open Access

    ARTICLE

    Sensors-Based Ambient Assistant Living via E-Monitoring Technology

    Sadaf Hafeez1, Yazeed Yasin Ghadi2, Mohammed Alarfaj3, Tamara al Shloul4, Ahmad Jalal1, Shaharyar Kamal1, Dong-Seong Kim5,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4935-4952, 2022, DOI:10.32604/cmc.2022.023841 - 28 July 2022

    Abstract Independent human living systems require smart, intelligent, and sustainable online monitoring so that an individual can be assisted timely. Apart from ambient assisted living, the task of monitoring human activities plays an important role in different fields including virtual reality, surveillance security, and human interaction with robots. Such systems have been developed in the past with the use of various wearable inertial sensors and depth cameras to capture the human actions. In this paper, we propose multiple methods such as random occupancy pattern, spatio temporal cloud, way-point trajectory, Hilbert transform, Walsh Hadamard transform and bone More >

  • Open Access

    ARTICLE

    A Hybrid Duo-Deep Learning and Best Features Based Framework for Action Recognition

    Muhammad Naeem Akbar1,*, Farhan Riaz1, Ahmed Bilal Awan1, Muhammad Attique Khan2, Usman Tariq3, Saad Rehman2

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2555-2576, 2022, DOI:10.32604/cmc.2022.028696 - 16 June 2022

    Abstract Human Action Recognition (HAR) is a current research topic in the field of computer vision that is based on an important application known as video surveillance. Researchers in computer vision have introduced various intelligent methods based on deep learning and machine learning, but they still face many challenges such as similarity in various actions and redundant features. We proposed a framework for accurate human action recognition (HAR) based on deep learning and an improved features optimization algorithm in this paper. From deep learning feature extraction to feature classification, the proposed framework includes several critical steps.… More >

  • Open Access

    ARTICLE

    Smart Deep Learning Based Human Behaviour Classification for Video Surveillance

    Esam A. AlQaralleh1, Fahad Aldhaban2, Halah Nasseif2, Malek Z. Alksasbeh3, Bassam A. Y. Alqaralleh2,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5593-5605, 2022, DOI:10.32604/cmc.2022.026666 - 21 April 2022

    Abstract Real-time video surveillance system is commonly employed to aid security professionals in preventing crimes. The use of deep learning (DL) technologies has transformed real-time video surveillance into smart video surveillance systems that automate human behavior classification. The recognition of events in the surveillance videos is considered a hot research topic in the field of computer science and it is gaining significant attention. Human action recognition (HAR) is treated as a crucial issue in several applications areas and smart video surveillance to improve the security level. The advancements of the DL models help to accomplish improved… More >

  • Open Access

    ARTICLE

    Effective Frameworks Based on Infinite Mixture Model for Real-World Applications

    Norah Saleh Alghamdi1, Sami Bourouis2,*, Nizar Bouguila3

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1139-1156, 2022, DOI:10.32604/cmc.2022.022959 - 24 February 2022

    Abstract Interest in automated data classification and identification systems has increased over the past years in conjunction with the high demand for artificial intelligence and security applications. In particular, recognizing human activities with accurate results have become a topic of high interest. Although the current tools have reached remarkable successes, it is still a challenging problem due to various uncontrolled environments and conditions. In this paper two statistical frameworks based on nonparametric hierarchical Bayesian models and Gamma distribution are proposed to solve some real-world applications. In particular, two nonparametric hierarchical Bayesian models based on Dirichlet process… More >

  • Open Access

    ARTICLE

    Skeleton Split Strategies for Spatial Temporal Graph Convolution Networks

    Motasem S. Alsawadi*, Miguel Rio

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4643-4658, 2022, DOI:10.32604/cmc.2022.022783 - 14 January 2022

    Abstract Action recognition has been recognized as an activity in which individuals’ behaviour can be observed. Assembling profiles of regular activities such as activities of daily living can support identifying trends in the data during critical events. A skeleton representation of the human body has been proven to be effective for this task. The skeletons are presented in graphs form-like. However, the topology of a graph is not structured like Euclidean-based data. Therefore, a new set of methods to perform the convolution operation upon the skeleton graph is proposed. Our proposal is based on the Spatial… More >

Displaying 21-30 on page 3 of 40. Per Page