Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access


    Modeling Active Contraction and Relaxation of Left Ventricle Using Different Zero-load Diastole and Systole Geometries for Better Material Parameter Estimation and Stress/Strain Calculations

    Longling Fan1,§, Jing Yao2,§, Chun Yang3, Di Xu2, Dalin Tang1,4*

    Molecular & Cellular Biomechanics, Vol.13, No.1, pp. 33-55, 2016, DOI:10.3970/mcb.2016.013.044

    Abstract Modeling ventricle active contraction based on in vivo data is extremely challenging because of complex ventricle geometry, dynamic heart motion and active contraction where the reference geometry (zero-stress geometry) changes constantly. A new modeling approach using different diastole and systole zero-load geometries was introduced to handle the changing zero-load geometries for more accurate stress/strain calculations. Echo image data were acquired from 5 patients with infarction (Infarct Group) and 10 without (Non-Infarcted Group). Echo-based computational two-layer left ventricle models using one zero-load geometry (1G) and two zero-load geometries (2G) were constructed. Material parameter values in Mooney-Rivlin… More >

Displaying 1-10 on page 1 of 1. Per Page