Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Self-Organizing Gaussian Mixture Map Based on Adaptive Recursive Bayesian Estimation

    He Ni1,*, Yongqiao Wang1, Buyun Xu2

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 227-236, 2020, DOI:10.31209/2019.100000068

    Abstract The paper presents a probabilistic clustering approach based on self-organizing learning algorithm and recursive Bayesian estimation. The model is built upon the principle that the market data space is multimodal and can be described by a mixture of Gaussian distributions. The model parameters are approximated by a stochastic recursive Bayesian learning: searches for the maximum a posterior solution at each step, stochastically updates model parameters using a “dualneighbourhood” function with adaptive simulated annealing, and applies profile likelihood confidence interval to avoid prolonged learning. The proposed model is based on a number of pioneer works, such More >

Displaying 1-10 on page 1 of 1. Per Page