Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Empowering Diagnosis: Cutting-Edge Segmentation and Classification in Lung Cancer Analysis

    Iftikhar Naseer1,2, Tehreem Masood1,2, Sheeraz Akram3,*, Zulfiqar Ali4, Awais Ahmad3, Shafiq Ur Rehman3, Arfan Jaffar1,2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4963-4977, 2024, DOI:10.32604/cmc.2024.050204

    Abstract Lung cancer is a leading cause of global mortality rates. Early detection of pulmonary tumors can significantly enhance the survival rate of patients. Recently, various Computer-Aided Diagnostic (CAD) methods have been developed to enhance the detection of pulmonary nodules with high accuracy. Nevertheless, the existing methodologies cannot obtain a high level of specificity and sensitivity. The present study introduces a novel model for Lung Cancer Segmentation and Classification (LCSC), which incorporates two improved architectures, namely the improved U-Net architecture and the improved AlexNet architecture. The LCSC model comprises two distinct stages. The first stage involves… More >

  • Open Access

    ARTICLE

    Classification of Multi-view Digital Mammogram Images Using SMO-WkNN

    P. Malathi1,*, G. Charlyn Pushpa Latha2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1741-1758, 2023, DOI:10.32604/csse.2023.035185

    Abstract Breast cancer (BCa) is a leading cause of death in the female population across the globe. Approximately 2.3 million new BCa cases are recorded globally in females, overtaking lung cancer as the most prevalent form of cancer to be diagnosed. However, the mortality rates for cervical and BCa are significantly higher in developing nations than in developed countries. Early diagnosis is the only option to minimize the risks of BCa. Deep learning (DL)-based models have performed well in image processing in recent years, particularly convolutional neural network (CNN). Hence, this research proposes a DL-based CNN… More >

  • Open Access

    ARTICLE

    Brain Tumor Identification Using Data Augmentation and Transfer Learning Approach

    K. Kavin Kumar1, P. M. Dinesh2, P. Rayavel3, L. Vijayaraja4, R. Dhanasekar4, Rupa Kesavan5, Kannadasan Raju6, Arfat Ahmad Khan7, Chitapong Wechtaisong8,*, Mohd Anul Haq9, Zamil S. Alzamil9, Ahmed Alhussen10

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1845-1861, 2023, DOI:10.32604/csse.2023.033927

    Abstract A brain tumor is a lethal neurological disease that affects the average performance of the brain and can be fatal. In India, around 15 million cases are diagnosed yearly. To mitigate the seriousness of the tumor it is essential to diagnose at the beginning. Notwithstanding, the manual evaluation process utilizing Magnetic Resonance Imaging (MRI) causes a few worries, remarkably inefficient and inaccurate brain tumor diagnoses. Similarly, the examination process of brain tumors is intricate as they display high unbalance in nature like shape, size, appearance, and location. Therefore, a precise and expeditious prognosis of brain… More >

  • Open Access

    ARTICLE

    Early Detection of Autism in Children Using Transfer Learning

    Taher M. Ghazal1,2, Sundus Munir3,4, Sagheer Abbas3, Atifa Athar5, Hamza Alrababah1, Muhammad Adnan Khan6,*

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 11-22, 2023, DOI:10.32604/iasc.2023.030125

    Abstract Autism spectrum disorder (ASD) is a challenging and complex neuro-development syndrome that affects the child’s language, speech, social skills, communication skills, and logical thinking ability. The early detection of ASD is essential for delivering effective, timely interventions. Various facial features such as a lack of eye contact, showing uncommon hand or body movements, babbling or talking in an unusual tone, and not using common gestures could be used to detect and classify ASD at an early stage. Our study aimed to develop a deep transfer learning model to facilitate the early detection of ASD based More >

  • Open Access

    ARTICLE

    Lung Cancer Detection Using Modified AlexNet Architecture and Support Vector Machine

    Iftikhar Naseer1,*, Tehreem Masood1, Sheeraz Akram1, Arfan Jaffar1, Muhammad Rashid2, Muhammad Amjad Iqbal3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2039-2054, 2023, DOI:10.32604/cmc.2023.032927

    Abstract Lung cancer is the most dangerous and death-causing disease indicated by the presence of pulmonary nodules in the lung. It is mostly caused by the instinctive growth of cells in the lung. Lung nodule detection has a significant role in detecting and screening lung cancer in Computed tomography (CT) scan images. Early detection plays an important role in the survival rate and treatment of lung cancer patients. Moreover, pulmonary nodule classification techniques based on the convolutional neural network can be used for the accurate and efficient detection of lung cancer. This work proposed an automatic… More >

  • Open Access

    ARTICLE

    Detection of Diabetic Retinopathy from Retinal Images Using DenseNet Models

    R. Nandakumar1, P. Saranya2,*, Vijayakumar Ponnusamy3, Subhashree Hazra2, Antara Gupta2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 279-292, 2023, DOI:10.32604/csse.2023.028703

    Abstract A prevalent diabetic complication is Diabetic Retinopathy (DR), which can damage the retina’s veins, leading to a severe loss of vision. If treated in the early stage, it can help to prevent vision loss. But since its diagnosis takes time and there is a shortage of ophthalmologists, patients suffer vision loss even before diagnosis. Hence, early detection of DR is the necessity of the time. The primary purpose of the work is to apply the data fusion/feature fusion technique, which combines more than one relevant feature to predict diabetic retinopathy at an early stage with… More >

  • Open Access

    ARTICLE

    Big Data Analytics: Deep Content-Based Prediction with Sampling Perspective

    Waleed Albattah, Saleh Albahli*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 531-544, 2023, DOI:10.32604/csse.2023.021548

    Abstract The world of information technology is more than ever being flooded with huge amounts of data, nearly 2.5 quintillion bytes every day. This large stream of data is called big data, and the amount is increasing each day. This research uses a technique called sampling, which selects a representative subset of the data points, manipulates and analyzes this subset to identify patterns and trends in the larger dataset being examined, and finally, creates models. Sampling uses a small proportion of the original data for analysis and model training, so that it is relatively faster while… More >

  • Open Access

    ARTICLE

    Face Mask Recognition for Covid-19 Prevention

    Trong Hieu Luu1, Phan Nguyen Ky Phuc2,*, Zhiqiu Yu3, Duy Dung Pham1, Huu Trong Cao1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3251-3262, 2022, DOI:10.32604/cmc.2022.029663

    Abstract In recent years, the COVID-19 pandemic has negatively impacted all aspects of social life. Due to ease in the infected method, i.e., through small liquid particles from the mouth or the nose when people cough, sneeze, speak, sing, or breathe, the virus can quickly spread and create severe problems for people’s health. According to some research as well as World Health Organization (WHO) recommendation, one of the most economical and effective methods to prevent the spread of the pandemic is to ask people to wear the face mask in the public space. A face mask… More >

  • Open Access

    ARTICLE

    Rice Leaves Disease Diagnose Empowered with Transfer Learning

    Nouh Sabri Elmitwally1,2, Maria Tariq3,4, Muhammad Adnan Khan5,*, Munir Ahmad3, Sagheer Abbas3, Fahad Mazaed Alotaibi6

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1001-1014, 2022, DOI:10.32604/csse.2022.022017

    Abstract In the agricultural industry, rice infections have resulted in significant productivity and economic losses. The infections must be recognized early on to regulate and mitigate the effects of the attacks. Early diagnosis of disease severity effects or incidence can preserve production from quantitative and qualitative losses, reduce pesticide use, and boost ta country’s economy. Assessing the health of a rice plant through its leaves is usually done as a manual ocular exercise. In this manuscript, three rice plant diseases: Bacterial leaf blight, Brown spot, and Leaf smut, were identified using the Alexnet Model. Our research More >

  • Open Access

    ARTICLE

    Optimization of Deep Learning Model for Plant Disease Detection Using Particle Swarm Optimizer

    Ahmed Elaraby1,*, Walid Hamdy2, Madallah Alruwaili3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 4019-4031, 2022, DOI:10.32604/cmc.2022.022161

    Abstract Plant diseases are a major impendence to food security, and due to a lack of key infrastructure in many regions of the world, quick identification is still challenging. Harvest losses owing to illnesses are a severe problem for both large farming structures and rural communities, motivating our mission. Because of the large range of diseases, identifying and classifying diseases with human eyes is not only time-consuming and labor intensive, but also prone to being mistaken with a high error rate. Deep learning-enabled breakthroughs in computer vision have cleared the road for smartphone-assisted plant disease and… More >

Displaying 1-10 on page 1 of 15. Per Page